MVE136 Random Signals Analysis

Written exam Monday 19 August 20132 - 6 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta or 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
GRADES: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively. Good Luck!

Task 1. Let X and Y be zero-mean, unit variance Gaussian random variables with correlation coefficient ρ. Suppose we form two new random variables U and V using a linear trasnformation as

$$
U=a X+b Y \quad \text { and } \quad V=c X+d Y
$$

where a, b, c and d are real (non-random) coefficients/constants. Find constraints on a, b, c and d such that U and V are independent. (5 points)

Task 2. Find the probability $\operatorname{Pr}(X(1)+X(2)>3)$ for a Poisson process with rate 1. (5 points)

Task 3. Consider a discrete time Markov chain $X(n)$ with state space E and transition probability matrix P given by

$$
E=\{0,1\} \quad \text { and } \quad P=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 4 & 3 / 4
\end{array}\right]
$$

respectively. What initial distribution $\pi(0)$ of the chain will give a distribution $\pi(2)$ of the value of the chain $X(2)$ at time $n=2$ given by $\pi(2)=\left[\begin{array}{ll}1 / 3 & 2 / 3\end{array}\right] ?$

Task 4. The PSD $S_{X X}(f)$ of a continuous time WSS process $X(t)$ has the properties to be real and symmetric (=even). Prove one of these properties. (5 points)

Task 5. Give an example of a continuous time impulse response function h that has the property that when a continuous time white noise process $N(t)$ with PSD $S_{N N}(f)=N_{0} / 2$ is input to an LTI system with this impulse response, then the output process $Y(t)$ from the system has $\operatorname{PSD} S_{Y Y}(f)$ that is decreasing for $f \geq 0$ and satisfies $S_{Y Y}\left(f_{0}\right)=S_{Y Y}(0) / 2=N_{0} / 4$ for a certain frequency $f_{0}>0$. (In other words the LTI system is a lowpass filter with 3 dB bandwith f_{0}.) (5 points)

Task 6. Suppose that we observe

$$
x[n]=d[n]+w[n],
$$

where both $d[n]$ and $w[n]$ are wide sense stationary signals and

$$
\mathrm{E}\{d[n-k] w[n]\}=0 \quad \text { for all } k \text { and } n .
$$

Further assume that $r_{d}[0]=1$ and $r_{d}[1]=0.5$ whereas $r_{w}[n]=\delta[n]$.
Your task is to design a causal FIR-Wiener filter of length two:

$$
\hat{d}[n]=h[0] x[n]+h[1] x[n-1] .
$$

Use the Wiener-Hopf equations to compute the optimal filter coefficients $h[0]$ and $h[1]$, i.e., the coefficients that minimize the mean squared error $\mathrm{E}\left\{(d[n]-\hat{d}[n])^{2}\right\}$.
points)

MVE136 Random Signals Analysis

Solutions to written exam Monday 19 August 2013

Task 1. This is Exercise 5.29 in the 2004 edition of Miller and Childers's (=Exercise 5.30 in the 2012 edition). The solution is available at the URL
www.math.chalmers.se/Stat/Grundutb/CTH/mve135/1011/Exercises/HomeExercise4.pdf
Task 2. As $X(1)+X(2)=(X(2)-X(1))+2 X(1)$ where $X(2)-X(1)$ and $X(1)$ are independent $\operatorname{Po}(1)$-distributed we have $\operatorname{Pr}(X(1)+X(2)>3)=\operatorname{Pr}((X(2)-X(1))+$ $2 X(1)>3)=\operatorname{Pr}(X(1) \geq 2)+\operatorname{Pr}(X(1)=1, X(2)-X(1)>1)+\operatorname{Pr}(X(1)=0, X(2)-$ $X(1)>3)=\left(1-\mathrm{e}^{-1}-\mathrm{e}^{-1}\right)+\mathrm{e}^{-1}\left(1-\mathrm{e}^{-1}-\mathrm{e}^{-1}\right)+\mathrm{e}^{-1}\left(1-\mathrm{e}^{-1}-\mathrm{e}^{-1}-\frac{1}{2} \mathrm{e}^{-1}-\frac{1}{6} \mathrm{e}^{-1}\right)$.

Task 3. Writing $\pi(0)=\left[\begin{array}{ll}p & 1-p\end{array}\right]$, we have
$\left[\begin{array}{ll}1 / 3 & 2 / 3\end{array}\right]=\pi(2)=\pi(0) P^{2}=\left[\begin{array}{ll}p & 1-p\end{array}\right]\left[\begin{array}{cc}3 / 8 & 5 / 8 \\ 5 / 16 & 11 / 16\end{array}\right]=\left[\frac{5}{16}+\frac{p}{16} \frac{11}{16}-\frac{p}{16}\right] \Leftrightarrow p=\frac{1}{3}$.

Task 4. As the autocorrelation function $R_{X X}(\tau)$ is symmetric we have $S_{X X}(-f)=$ $\int_{-\infty}^{\infty} R_{X X}(\tau) \mathrm{e}^{-j 2 \pi(-f) \tau} d \tau=\int_{-\infty}^{\infty} R_{X X}(\tau) \mathrm{e}^{-j 2 \pi f(-\tau)} d \tau=\int_{-\infty}^{\infty} R_{X X}(-\hat{\tau}) \mathrm{e}^{-j 2 \pi f \hat{\tau}} d \hat{\tau}=$ $\int_{-\infty}^{\infty} R_{X X}(\hat{\tau}) \mathrm{e}^{-j 2 \pi f \hat{\tau}} d \hat{\tau}=S_{X X}(f)$ and $\overline{S_{X X}(f)}=\overline{\int_{-\infty}^{\infty} R_{X X}(\tau) \mathrm{e}^{-j 2 \pi f \tau} d \tau}=\int_{-\infty}^{\infty}$ $R_{X X}(\tau) \mathrm{e}^{j 2 \pi f \tau} d \tau=[$ see above $]=S_{X X}(f)$.

Task 5. If we take $h(t)=\exp \left(-t / t_{0}\right) u(t) / t_{0}$ then we have $H(f)=F[h(t)]=1 /(1+$ $\left.j 2 \pi f t_{0}\right)$, so that $S_{Y Y}(f)=|H(f)|^{2} S_{N N}(f)=\left(N_{0} / 2\right) /\left(1+4 \pi^{2} f^{2} t_{0}^{2}\right)$ satisfies the imposed requirements when $t_{0}=1 /\left(2 \pi f_{0}\right)$.

Task 6. For completeness, this solution will contain a derivation of the Wiener-Hopf (WH) equations. Let us denote the estimation error as $e[n]=d[n]-\hat{d}[n]$. We know that the optimal filter is such that

$$
\mathrm{E}\{e[n] x[n-k]\}=0 \quad \text { for } k=0,1
$$

We obtain the WH-equations by plugging in the expression for $e[n]$ in the above equation:

$$
\mathrm{E}\{(d[n]-h[0] x[n]-h[1] x[n-1]) x[n-k]\}=r_{d x}[k]-h[0] r_{x}[k]-h[1] r_{x}[k-1]=0
$$

for $k=0,1$. We can express these equations in matrix form as

$$
\left[\begin{array}{ll}
r_{x}[0] & r_{x}[1] \\
\left.r_{x} \mid 1\right] & r_{x}[0]
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1]
\end{array}\right]=\left[\begin{array}{l}
r_{d x}[0] \\
r_{d x}[1]
\end{array}\right] .
$$

Here we have

$$
r_{d x}[k]=\mathrm{E}\{d[n] x[n-k]\}=\mathrm{E}\{d[n](d[n-k]+w[n-k])\}=r_{d}[k]
$$

since $d[n]$ and $w[n-k]$ are uncorrelated. Similarly,

$$
r_{x}[k]=\mathrm{E}\{(d[n]+w[n])(d[n-k]+w[n-k])\}=r_{d}[k]+r_{w}[k] .
$$

Inserting this together with the information given in the problem into the matrix form of the WH-equation we arrive at

$$
\left[\begin{array}{cc}
2 & 0.5 \\
0.5 & 2
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1]
\end{array}\right]=\left[\begin{array}{c}
1 \\
0.5
\end{array}\right]
$$

with solution

$$
h[0]=\frac{1-\frac{1}{8}}{2-\frac{1}{8}} \approx 0.47 \quad \text { and } \quad h[1]=\frac{8}{60} \approx 0.13,
$$

which is the final answer to the problem.

