MVE136 Random Signals Analysis

Written exam Monday 18 August 2014 2–6 pm

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Beta <u>or</u> 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. GOOD LUCK!

Task 1. Calculate the probability Pr(X(1) = 1 | X(2) = 2) for a Poisson process X(t) with arrival rate $\lambda = 1$. (5 points)

Task 2. Find the autocorrelation E[X(1)X(2)] for a stationary Gaussian random process X(t) such that E[X(t)] = 0 and Var(X(t)) = 1 for all t and Var(X(1)+X(2)) = 3. (5 points)

Task 3. Consider a Markov chain with states $\{0, 1, 2\}$ that has stationary distribution $\pi = [1/4 \ 1/2 \ 1/4]$. Find one possible transition matrix P for this Markov chain.

(5 points)

Task 4. A WSS continuous time bandlimited white noise process N(t) with autocorrelation function $R_{NN}(\tau) = \operatorname{sinc}(\tau/(\pi t_0))$ and PSD $S_{NN}(f) = \pi t_0 \operatorname{rect}(f\pi t_0)$ is input to an LTI system with impulse response $h(t) = e^{-t/t_0} u(t)$ and transfer function $H(f) = t_0/(1+j2\pi f t_0)$. Find $E[Y(t)^2]$ for the output process Y(t) of the LTI system.

(5 points)

Task 5. Show that the PSD $S_{XX}(f)$ of a continuous time WSS process X(t) is symmetric, that is, show that $S_{XX}(-f) = S_{XX}(f)$. (5 points)

Task 6. Compute the periodogram of the data sequence x[0] = 2, x[1] = 0 and x[2] = 2. Try to simplify the expression and plot/sketch it. What is the interpretation of the periodogram?

Obviously, N = 3 samples are not enough to estimate the power spectral density accurately. What property of the periodogram would improve as N increases and what weaknesses would remain? (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 18 August 2014

Task 1. $\Pr(X(1) = 1 | X(2) = 2) = \Pr(X(1) = 1, X(2) = 2) / \Pr(X(2) = 2) = \Pr(X(1) = 1, X(2) - X(1) = 1) / \Pr(X(2) = 2) = \Pr(X(1) = 1) \Pr(X(2) - X(1) = 1) / \Pr(X(2) = 2) = (e^{-\lambda \cdot 1} (\lambda \cdot 1)^1 / (1!))^2 / (e^{-\lambda \cdot 2} (\lambda \cdot 2)^2 / (2!)) = 1/2.$

Task 2. As X(1) + X(2) is zero-mean we have $\operatorname{Var}(X(1) + X(2)) = \operatorname{E}[(X(1) + X(2))^2]$ = $\operatorname{E}[X(1)^2] + \operatorname{E}[X(2)^2] + 2\operatorname{E}[X(1)X(2)] = \operatorname{Var}(X(1)) + \operatorname{Var}(X(2)) + 2\operatorname{E}[X(1)X(2)] = 1 + 1 + 2\operatorname{E}[X(1)X(2)] = 3$, so that $\operatorname{E}[X(1)X(2)] = 1/2$.

Task 3. It is easy to see that

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$$

does the job to solve the equation $\pi P = \pi$ for the π given.

Task 4. $R_{YY}(0) = \int_{-\infty}^{\infty} S_{YY}(f) df = \int_{-\infty}^{\infty} S_{NN}(f) |H(f)|^2 df = \int_{-\infty}^{\infty} \pi t_0 \operatorname{rect}(f\pi t_0) t_0^2 / (1 + (2\pi f t_0)^2) df = \int_{-1/(2\pi t_0)}^{1/(2\pi t_0)} \pi t_0^3 / (1 + (2\pi f t_0)^2) df = (t_0^2/2) [\arctan(2\pi f t_0)]_{f=-1/(2\pi t_0)}^{f=1/(2\pi t_0)} = \pi t_0^2 / 4.$

Task 5. As the autocorrelation function $R_{XX}(\tau)$ is symmetric we have $S_{XX}(-f) = \int_{-\infty}^{\infty} e^{-j2\pi(-f)\tau} R_{XX}(\tau) d\tau = \int_{-\infty}^{\infty} e^{-j2\pi(-f)(-\hat{\tau})} R_{XX}(-\hat{\tau}) d\hat{\tau} = \int_{-\infty}^{\infty} e^{-j2\pi f\hat{\tau}} R_{XX}(\hat{\tau}) d\hat{\tau}$ = $S_{XX}(f)$.

Task 6. The periodogram is given by $\hat{P}_{per}(e^{j\omega}) = \frac{1}{N} |X_N(e^{j\omega})|^2$, where, in this case, N = 3 and

$$X_N(e^{j\omega}) = X_3(e^{j\omega}) = x[0] + x[1] e^{-j\omega} + x[2] e^{-2j\omega} = 2(1 + e^{-2j\omega}).$$

It follows that

$$\hat{P}_{per}(e^{j\omega}) = \frac{4}{3} \left(1 + e^{-2j\omega}\right) \left(1 + e^{2j\omega}\right) = \frac{4}{3} \left(2 + e^{-2j\omega} + e^{2j\omega}\right) = \frac{8}{3} \left(1 + \cos(2\omega)\right),$$

which is illustrated in Figure 1 below.

The periodogram is an estimate of the power spectral density and can thus be interpreted as an estimate of the "power per frequency" in the process x[n]. We know that the periodogram is asymptotically unbiased and we therefore expect the periodogram

Figure 1: The periodogram of the sequence x[0], x[1], x[2].

to improve as N grows in the sense that the bias goes to zero. However, we also know that the variance converges to a fixed (and often fairly large) value as N grows and the remaining weakness is hence the large variance in the estimates.