MVE136 Random Signals Analysis

Written exam Monday 18 August 2014 2-6 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta or 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
GRADES: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively. Good luck!

Task 1. Calculate the probability $\operatorname{Pr}(X(1)=1 \mid X(2)=2)$ for a Poisson process $X(t)$ with arrival rate $\lambda=1$. (5 points)

Task 2. Find the autocorrelation $E[X(1) X(2)]$ for a stationary Gaussian random process $X(t)$ such that $\mathrm{E}[X(t)]=0$ and $\operatorname{Var}(X(t))=1$ for all t and $\operatorname{Var}(X(1)+X(2))=3$.

Task 3. Consider a Markov chain with states $\{0,1,2\}$ that has stationary distribution $\pi=\left[\begin{array}{lll}1 / 4 & 1 / 2 & 1 / 4\end{array}\right]$. Find one possible transition matrix P for this Markov chain.
(5 points)
Task 4. A WSS continuous time bandlimited white noise process $N(t)$ with autocorrelation function $R_{N N}(\tau)=\operatorname{sinc}\left(\tau /\left(\pi t_{0}\right)\right)$ and PSD $S_{N N}(f)=\pi t_{0} \operatorname{rect}\left(f \pi t_{0}\right)$ is input to an LTI system with impulse response $h(t)=\mathrm{e}^{-t / t_{0}} u(t)$ and transfer function $H(f)$ $=t_{0} /\left(1+j 2 \pi f t_{0}\right)$. Find $\mathrm{E}\left[Y(t)^{2}\right]$ for the output process $Y(t)$ of the LTI system.
(5 points)
Task 5. Show that the PSD $S_{X X}(f)$ of a continuous time WSS process $X(t)$ is symmetric, that is, show that $S_{X X}(-f)=S_{X X}(f)$. (5 points)

Task 6. Compute the periodogram of the data sequence $x[0]=2, x[1]=0$ and $x[2]=2$. Try to simplify the expression and plot/sketch it. What is the interpretation of the periodogram?

Obviously, $N=3$ samples are not enough to estimate the power spectral density accurately. What property of the periodogram would improve as N increases and what weaknesses would remain? (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 18 August 2014

Task 1. $\operatorname{Pr}(X(1)=1 \mid X(2)=2)=\operatorname{Pr}(X(1)=1, X(2)=2) / \operatorname{Pr}(X(2)=2)=\operatorname{Pr}(X(1)$ $=1, X(2)-X(1)=1) / \operatorname{Pr}(X(2)=2)=\operatorname{Pr}(X(1)=1) \operatorname{Pr}(X(2)-X(1)=1) / \operatorname{Pr}(X(2)=$ $2)=\operatorname{Pr}(X(1)=1)^{2} / \operatorname{Pr}(X(2)=2)=\left(\mathrm{e}^{-\lambda \cdot 1}(\lambda \cdot 1)^{1} /(1!)\right)^{2} /\left(\mathrm{e}^{-\lambda \cdot 2}(\lambda \cdot 2)^{2} /(2!)\right)=1 / 2$.

Task 2. As $X(1)+X(2)$ is zero-mean we have $\operatorname{Var}(X(1)+X(2))=\mathrm{E}\left[(X(1)+X(2))^{2}\right]$ $=\mathrm{E}\left[X(1)^{2}\right]+\mathrm{E}\left[X(2)^{2}\right]+2 \mathrm{E}[X(1) X(2)]=\operatorname{Var}(X(1))+\operatorname{Var}(X(2))+2 \mathrm{E}[X(1) X(2)]=$ $1+1+2 \mathrm{E}[X(1) X(2)]=3$, so that $\mathrm{E}[X(1) X(2)]=1 / 2$.

Task 3. It is easy to see that

$$
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0
\end{array}\right]
$$

does the job to solve the equation $\pi P=\pi$ for the π given.
Task 4. $R_{Y Y}(0)=\int_{-\infty}^{\infty} S_{Y Y}(f) d f=\int_{-\infty}^{\infty} S_{N N}(f)|H(f)|^{2} d f=\int_{-\infty}^{\infty} \pi t_{0} \operatorname{rect}\left(f \pi t_{0}\right) t_{0}^{2} /$ $\left(1+\left(2 \pi f t_{0}\right)^{2}\right) d f=\int_{-1 /\left(2 \pi t_{0}\right)}^{1 /\left(2 \pi t_{0}\right)} \pi t_{0}^{3} /\left(1+\left(2 \pi f t_{0}\right)^{2}\right) d f=\left(t_{0}^{2} / 2\right)\left[\arctan \left(2 \pi f t_{0}\right)\right]_{f=-1 /\left(2 \pi t_{0}\right)}^{f=1 /\left(2 \pi t_{0}\right)}=$ $\pi t_{0}^{2} / 4$.

Task 5. As the autocorrelation function $R_{X X}(\tau)$ is symmetric we have $S_{X X}(-f)=$ $\int_{-\infty}^{\infty} \mathrm{e}^{-j 2 \pi(-f) \tau} R_{X X}(\tau) d \tau=\int_{-\infty}^{\infty} \mathrm{e}^{-j 2 \pi(-f)(-\hat{\tau})} R_{X X}(-\hat{\tau}) d \hat{\tau}=\int_{-\infty}^{\infty} \mathrm{e}^{-j 2 \pi f \hat{\tau}} R_{X X}(\hat{\tau}) d \hat{\tau}$ $=S_{X X}(f)$.

Task 6. The periodogram is given by $\hat{P}_{\text {per }}\left(e^{j \omega}\right)=\frac{1}{N}\left|X_{N}\left(e^{j \omega}\right)\right|^{2}$, where, in this case, $N=3$ and

$$
X_{N}\left(e^{j \omega}\right)=X_{3}\left(e^{j \omega}\right)=x[0]+x[1] e^{-j \omega}+x[2] e^{-2 j \omega}=2\left(1+e^{-2 j \omega}\right) .
$$

It follows that

$$
\hat{P}_{p e r}\left(e^{j \omega}\right)=\frac{4}{3}\left(1+e^{-2 j \omega}\right)\left(1+e^{2 j \omega}\right)=\frac{4}{3}\left(2+e^{-2 j \omega}+e^{2 j \omega}\right)=\frac{8}{3}(1+\cos (2 \omega)),
$$

which is illustrated in Figure 1 below.
The periodogram is an estimate of the power spectral density and can thus be interpreted as an estimate of the "power per frequency" in the process $x[n]$. We know that the periodogram is asymptotically unbiased and we therefore expect the periodogram

Figure 1: The periodogram of the sequence $x[0], x[1], x[2]$.
to improve as N grows in the sense that the bias goes to zero. However, we also know that the variance converges to a fixed (and often fairly large) value as N grows and the remaining weakness is hence the large variance in the estimates.

