Summary of lecture 12

Lennart Svensson

Signals and Systems Chalmers University of Technology

Definition of ARMA

- Suppose e[n] is a white noise process (zero mean, WSS).
- We model x[n] as the output from a linear system

$$e[n] \longrightarrow H(z) \longrightarrow x[n]$$

• x[n] is an ARMA process if

$$H(z) = \frac{B(z)}{A(z)} = \frac{1 + b_1 z^{-1} + \dots + b_q z^{-q}}{1 + a_1 z^{-1} + \dots + a_p z^{-p}}$$

or, equivalently, if

$$x[n] + \dots + a_n x[n-p] = e[n] + \dots + b_n x[n-q]$$
 (1)

•
$$x[n]$$
 is 1) AR(p) if $B(z) = 1$ 2) MA(q) if $A(z) = 1$

PSD of ARMA

- e[n] is white noise $\Rightarrow r_e[n] = \delta[n]\sigma_e^2 \leftrightarrow P_e(e^{j\omega}) = \sigma^2$.
- We get

$$P_{x}\left(e^{j\omega}\right) = P_{e}\left(e^{j\omega}\right)\left|H\left(e^{j\omega}\right)\right|^{2} = \sigma^{2}\left|H\left(e^{j\omega}\right)\right|^{2}$$

 \rightsquigarrow the filter H(z) shapes the PSD of x

- Examples indicate that
 - AR good for peaks
 - MA useful for notches

whereas ARMA can combine the strengths.

ACF of ARMA

- Techniques to compute the ACF:
 - Find the PSD as above and compute

$$r_{\mathsf{x}}[n] = \mathcal{F}^{-1}\left\{P_{\mathsf{x}}\left(e^{j\omega}\right)\right\}$$

- → general solution, but often rather complicated.

ACF of AR-processes

Consider an AR(p)-process

$$x[n] + a_1x[n-1] + \cdots + a_px[n-p] = e[n]$$
 (2)

• Multiply by x[n-k], k > 0, and take expectations:

Yule-Walker (YW) equations

$$r_{\mathsf{x}}[k] + a_1 r_{\mathsf{x}}[k-1] + \dots + a_p r_{\mathsf{x}}[k-p] = \sigma^2 \delta[k]$$

- Note: 1) YW are linear in the autocorrelation function, $r_x[n]$ 2) by changing k, we can collect any number of equations.
 - \Rightarrow easy to find $r_{\times}[n]$ using YW

ACF of AR-processes: using the YW eq's

- Suppose we know a_1, \ldots, a_p and σ_e^2 .
- If we seek $r_x[k]$ for $k=0,1\ldots,p$: use YW for $k=0,1,\ldots,p$
- Let us illustrate these equations when p = 3,

$$\begin{bmatrix} 1 & a_1 & a_2 & a_3 \\ a_1 & 1 + a_2 & a_3 & 0 \\ a_2 & a_1 + a_3 & 1 & 0 \\ a_3 & a_2 & a_1 & 1 \end{bmatrix} \begin{bmatrix} r_x[0] \\ r_x[1] \\ r_x[2] \\ r_x[3] \end{bmatrix} = \begin{bmatrix} \sigma_e^2 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

- Remarks:
 - **1** p+1 linear equations with p+1 unknowns \Rightarrow easy to solve!
 - 2 $r_x[t]$, t > p can be found by using more YW-equations
 - No need to memorize the matrix equation → better to know how to derive them!

ACF of MA-processes

Consider an MA(q)-process

$$x[n] = e[n] + b_1 e[n-1] + \cdots + b_q e[n]$$
 (3)

• Multiply by x[n-k], $k \ge 0$, and take expectations:

Solution for $r_x[n]$ of an MA-processes

$$r_{\mathsf{x}}[k] = egin{cases} \sum_{i=0}^{q-k} \sigma_e^2 b_i b_{k+i} & ext{if } k \leq q \\ 0 & ext{otherwise.} \end{cases}$$

Note: 1) we do not have to solve an equation system
2) q is often small and then it is easier to rederive the expression than to memorize it!