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Definition of ARMA

Suppose e[n] is a white noise process (zero mean, WSS).
We model x [n] as the output from a linear system

e[n] H(z) x [n]

x [n] is an ARMA process if

H(z) =
B(z)
A(z)

=
1+ b1z−1 + · · ·+ bqz−q

1+ a1z−1 + · · ·+ apz−p

or, equivalently, if

x [n] + · · ·+ apx [n − p] = e[n] + · · ·+ bqx [n − q] (1)

x [n] is 1) AR(p) if B(z) = 1 2) MA(q) if A(z) = 1
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PSD of ARMA

e[n] is white noise ⇒ re [n] = δ[n]σ2
e ↔ Pe

(
e jω) = σ2.

We get

Px
(
e jω) = Pe

(
e jω) ∣∣H (e jω) ∣∣2 = σ2∣∣H (e jω) ∣∣2

 the filter H(z) shapes the PSD of x

Examples indicate that
– AR good for peaks
– MA useful for notches

whereas ARMA can combine the strengths.
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ACF of ARMA

Techniques to compute the ACF:

– Find the PSD as above and compute

rx [n] = F−1 {Px
(
e jω)}

 general solution, but often rather complicated.

– Derive linear equations from the difference equation (1)
 simple solution, but only works for AR and MA processes.
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ACF of AR-processes

Consider an AR(p)-process

x [n] + a1x [n − 1] + · · ·+ apx [n − p] = e[n] (2)

Multiply by x [n − k], k ≥ 0, and take expectations:

Yule-Walker (YW) equations

rx [k] + a1rx [k − 1] + · · ·+ aprx [k − p] = σ2 δ[k]

Note: 1) YW are linear in the autocorrelation function, rx [n]
2) by changing k , we can collect any number of equations.
⇒ easy to find rx [n] using YW
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ACF of AR-processes: using the YW eq’s

Suppose we know a1, . . . , ap and σ2
e .

If we seek rx [k] for k = 0, 1 . . . , p: use YW for k = 0, 1, . . . , p
Let us illustrate these equations when p = 3,

1 a1 a2 a3
a1 1+ a2 a3 0
a2 a1 + a3 1 0
a3 a2 a1 1




rx [0]
rx [1]
rx [2]
rx [3]

 =


σ2

e
0
0
0

 .
Remarks:

1 p + 1 linear equations with p + 1 unknowns ⇒ easy to solve!
2 rx [t], t > p can be found by using more YW-equations
3 No need to memorize the matrix equation  better to know

how to derive them!
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ACF of MA-processes

Consider an MA(q)-process

x [n] = e[n] + b1e[n − 1] + · · ·+ bqe[n] (3)

Multiply by x [n − k], k ≥ 0, and take expectations:

Solution for rx [n] of an MA-processes

rx [k] =

{∑q−k
i=0 σ

2
ebibk+i if k ≤ q

0 otherwise.

Note: 1) we do not have to solve an equation system
2) q is often small and then it is easier to rederive the

expression than to memorize it!

Chalmers University of Technology Lennart Svensson 7/7


