
MVE136 Random Signals Analysis

Written exam Wednesday 28 October 2015 2–6 pm

Teacher and Jour: Patrik Albin, telephone 070 6945709.

Aids: Beta or 2 sheets (=4 pages) of hand-written notes (computer print-outs and/or

xerox-copies are not allowed), but not both these aids.

Grades: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively.

Motivations: All answers/solutions must be motivated. Good luck!

Task 1. Calculate the probability P (X(1)=1, X(4)=4 |X(2)=2, X(3)=3, X(5)=5)

for a Poisson process X(t) with arrival rate λ> 0. (5 points)

Task 2. A continuous time random process X(t), t ≥ 0, is called H-selfsimilar if

the random variables (X(λt1), . . . , X(λtn)) and (λHX(t1), . . . , λ
HX(tn)) have the same

PDF for each choice of λ > 0, n ∈ N and t1, . . . , tn ≥ 0. Show that a Gaussian process

X(t), t≥ 0, is H-selfsimilar if and only if its mean and autocovariance functions satisfy

µX(λt) = λHµX(t) and CXX(λt1, λt2) = λ2HCXX(t1, t2), respectively. (5 points)

Task 3. Two students play a game consisting of tossing two dice. At each game the

students bet one dollar each, if the sum of the two dice is less than 7 student A collects

the two dollars in the pot, if the sum is greater than 7 student B collects the pot, while

if the sum is 7 the students with the fewest dollars collects the pot (with the pot being

shared if the students have the same amounts of dollars). The game continues until

one student is bankrupt. Each students have a starting amount of 3 dollars. Find the

transition matrix P for the Markov chain X[k] indicating the amount of dollars student

A posesses after k games. (5 points)

Task 4. Let N(t), t∈R, be a continuous time WSS white noise process with zero-mean,

constant PSD SNN (f) = N0/2 and autocorrelation function RNN (τ) = (N0/2) δ(τ).

Find the autocorrelation function RWW (t1, t2) for the integrated white noise process

W (t) =
∫ t

0 N(r) dr, t≥ 0. (5 points)

Task 5. A continuous time deterministic (=non-random) signal s(t) is transmitted

on a noisy channel so that the noise disturbed signal X(t) = s(t) + N(t) is recived,

where N(t) is a (random) zero-mean white noise process with PSD SNN (f) = N0/2.

The task for the electrical engineer is to process the recived signal X(t) through an LTI
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system with a suitably choosen impulse response h(t) so that the signal to noise ratio

SNR(t) = E[((s ∗ h)(t))2]/E[((N ∗ h)(t))2] is maximized at time t= t0.

(a) Show that SNR(t) = (2/N0)[
∫

∞

−∞
h(u)s(t−u) du]2/[

∫

∞

−∞
h(u)2 du]. (2.5 points)

(b) According to Section 11.5 in the book by Miller & Childers the impulse response h(t)

that maximizes SNR(t0) is given by h(t) = s(t0−t): Prove this fact! (2.5 points)

Task 6. Prediction is an important tool in many contexts, including decision theory,

planning and control. Suppose that we wish to predict x[n+1] given x[n] and x[n− 1],

where x[n] is an MA(2)-process

x[n] = e[n] + 0.5 e[n−1] + 0.2 e[n−2] for n∈N.

The input noise e[n] is assumed to be a wide sense stationary zero mean white noise

process with variance E[e[n]2] = 1 and autocorrelation function re[k] = E[e[n]e[n+k]] =

0 for k 6= 0. We will further assume that we seek a linear estimator

x̂[n+ 1] = h0 x[n] + h1 x[n−1].

Find the coefficients h0 and h1 that minimize E[(x[n+1]− x̂[n+1])2]. (5 points)
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MVE136 Random Signals Analysis

Solutions to written exam 28 October 2015

Task 1. P (X(1)=1, X(4)=4 |X(2)=2, X(3)=3, X(5)=5)

=
P (X(1)=1, X(4)=4, X(2)=2, X(3)=3, X(5)=5)

P (X(2)=2, X(3)=3, X(5)=5)

=
P (X(1)=1, X(2)−X(1) = 1, X(3)−X(2) = 1, X(4)−X(3) = 1, X(5)−X(4) = 1)

P (X(2)=2, X(3)−X(2) = 1, X(5)−X(3) = 2)

=
[P (X(1)=1)]5

P (X(2)=2)P (X(2)=1)P (X(2)=2)

=
[P (X(1)=1)]4

[P (X(2)=2)]2

=
[λ1/((1!) · eλ)]4

[(2λ)2/((2!) · e2λ)]2
=

1

4
.

Task 2. As a Gaussian process X(t), t ≥ 0, is fully determined by its mean and

autocovariance functions it follows that X(t) is H-selfsimilar if and only if the Gaussian

processes X(λt), t ≥ 0, and λHX(t), t ≥ 0, have the same mean and autocovariance

functions. However, these functions for these processes are given by µX(λt) together

with CXX(λt1, λt2) and λHµX(t) together with λ2HCXX(t1, t2), resepectively.

Task 3.

P =
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1 0 0 0 0 0 0

5/12 0 7/12 0 0 0 0

0 5/12 0 7/12 0 0 0

0 0 5/12 1/6 5/12 0 0

0 0 0 7/12 0 5/12 0

0 0 0 0 7/12 0 5/12

0 0 0 0 0 0 1
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
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Task 4. We have RWW (t1, t2) = E[(
∫ t1
0 N(r) dr) (

∫ t2
0 N(s) ds)] =

∫ t1
0

∫ t2
0 E[N(r)N(s)]

drds =
∫ t1
0

∫ t2
0 (N0/2)δ(s−r) drds =

∫ min(t1,t2)
0 (N0/2) dr = (N0/2) min(t1, t2).

Task 5. See Section 11.5 in the book by Miller & Childers.

Task 6. Let us first formulate this problem in terms of our standard notation for

Wiener filtering: Our quantity of interest is usually denoted d[n] whereas our estimator

is denoted d̂[n]. In this problem, we have d[n] = x[n+1] and d̂[n] = h0 x[n] + h1 x[n−1].

In terms of this notation, the Wiener-Hopf equations can be expressed as
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{

h0 rx[0] + h1 rx[1] = rdx[0]

h0 rx[1] + h1 rx[0] = rdx[1]
,

which can also be written on matrix form




rx[0] rx[1]

rx[1] rx[0]









h0

h1



 =





rdx[0]

rdx[1]



 . (1)

For this problem, we note that rdx[0] = E[d[n]x[n]] = E[x[n+1]x[n]] = rx[1] and

rdx[1] = E[d[n]x[n−1]] = E[x[n+1]x[n−1]] = rx[2] so that it is therefore sufficient to

compute rx[k] for k = 0, 1 and 2 before we can solve for h0 and h1.

Let us try to derive a general expression for rx[k]: Given our expression for x[n] it

holds that

rx[k] = E[x[n]x[n−k]]

= E
[

(e[n]+0.5 e[n−1]+0.2 e[n−2]) (e[n−k]+0.5 e[n−1−k]+0.2 e[n−2−k])
]

=


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












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







0 if |k|> 2

0.2 if |k|= 2

0.5+0.2 ·0.5 = 0.6 if |k|= 1

1+0.5 ·0.5 +0.2 ·0.2 = 1.29 if k= 0

. (2)

By combining (1) with (2), we obtain the matrix equation





1.29 0.6

0.6 1.29









h0

h1



 =





0.6

0.2



 ,

from which we can find the solutions h0 ≈ 0.50 and h1 ≈−0.08.
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