L13: Spectrum estimation – nonparametric and parametric

Lennart Svensson

Department of Signals and Systems Chalmers University of Technology

Learning objectives

After today's lecture you should be able to

- Describe what the **periodogram** is and list its most important properties.
- Explain why the **modified periodogram** is sometimes an important improvement.
- Describe why **Blackman-Tukey's method** has lower variance than the periodogram.
- Derive how to estimate AR-parameters from data.

 \rightsquigarrow abilities that will help you to understand laboration 2!

Notation and objective A first example

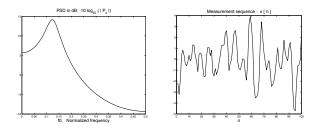
Notation and objective

- Let x[n] be a zero mean, wide sense stationary process.
- **Objective**: estimate $P_x(e^{j\omega})$ from a measurement sequence $x[0], x[1], \ldots, x[N-1]$.
- Application examples: speech processing, medical diagnosis, control system design, radar, etc.

Notation and objective A first example

Today's main example

• Example 1: x[n] is an AR(2)-process and thus a WSS-process



- **Task:** estimate $P_x(e^{j\omega})$ from x[n].

CHALMERS Chalmers University of Technology

Lennart Svensson

The periodogram The modified periodogram Blackman-Tukey's method: smoothed period.

The periodogram: definition

• The periodogram is defined as

$$\hat{P}_{per}\left(e^{j\omega}
ight)=rac{1}{N}\left|X_{N}\left(e^{j\omega}
ight)
ight|^{2}$$

where

$$X_N(e^{j\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\omega n}.$$

• Note:

- Efficiently computed using DFT (FFT).
- 2 Asymptotically unbiased!

The periodogram The modified periodogram Blackman-Tukey's method: smoothed period.

The periodogram vs the PSD

• The PSD can be defined as

$$P_{x}\left(e^{j\omega}\right) = \lim_{N \to \infty} \frac{1}{N} E\left\{\left|X_{N}\left(e^{j\omega}\right)\right|^{2}\right\}$$

where $X_N(e^{j\omega})$ is as above.

- Two practical difficulties
 - **(**) We are only given one sequence \Rightarrow can't do expected values.
 - **2** Given a finite sequence (*N* observations) \Rightarrow can't let $N \rightarrow \infty$.
- The periodogram ignores both of these!

The periodogram The modified periodogram Blackman-Tukey's method: smoothed period.

The periodogram: bias for finite N

• The DFT
$$X_{N}\left(e^{j\omega}
ight)$$
 can be written as

$$X_{N}(e^{j\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} w_{R}[n]x[n]e^{-j\omega n}$$
$$= \mathsf{DTFT}(w_{R}[n]x[n]) = W_{R}(e^{j\omega}) \star X(e^{j\omega}).$$

- $W_R\left(e^{j\omega}
 ight)$ changes the PSD and creates two types of bias:
 - The mainlobe smears out the peaks \Rightarrow frequency resolution is limited by $\Delta \omega \approx 2\pi/N$.
 - Sidelobes cause "frequency masking and leaking".
- As $N \to \infty$, $W_R(e^{j\omega}) \star X(e^{j\omega}) \to X(e^{j\omega})$ which means that the bias disappears.

The periodogram **The modified periodogram** Blackman-Tukey's method: smoothed period.

The modified periodogram

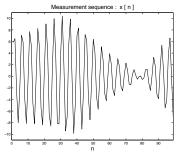
- Idea: replace $w_R[n]$ by a different window
- Among all windows with the same width *N*, the rectangular window has the narrowest mainlobe (which is a benefit).
- Examples of other windows are Bartlett (triangular), Hamming and Chebyshev.
 All of these have lower sidelobes but wider mainlobes.

The modified periodogram – example 2

• Here x[n] is a deterministic function:

 $x[n] = A_1 \cos(0.2 \cdot 2\pi n) + A_1 \sin(0.21 \cdot 2\pi n) + A_2 \cos(0.2295 \cdot 2\pi n).$

where $A_2 < A_1$ (20 log₁₀(A_1/A_2) = 26).



• Note: x[n] is not a WSS signal. Still useful to illustrate situations where resolution is important.

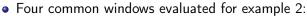
CHALMERS Chalmers University of Technology

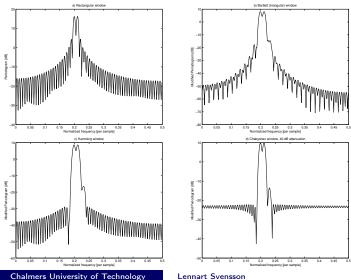
Lennart Svensson

The periodogram The modified periodogram Blackman-Tukey's method: smoothed period.

The modified periodogram – example 2

CHALMERS





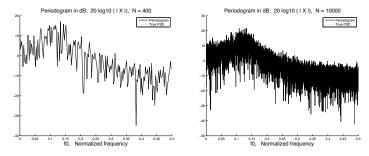
The periodogram The modified periodogram Blackman-Tukey's method: smoothed period.

Blackman-Tukey's method

• For large N it holds that

$${\sf Var}(\hat{P}_{per}(e^{j\omega}))pprox P^2(e^{j\omega})$$

which means that $\hat{P}_{per}(e^{j\omega})$ is very noisy.



 We would like to perform averaging in order to reduce variance!

Blackman-Tukey's method

• Here we only discuss Blackman-Tukey's method which is often a good choice.

 \rightsquigarrow see lecture notes for Bartlett's and Welch's methods.

• Important observation: $X_N(e^{j\omega_1})$ and $X_N(e^{j\omega_2})$ are approximately uncorrelated whenever $N|\omega_1 - \omega_2|$ is "large".

Idea: perform local averaging of the periodogram,

$$\hat{P}_{BT}\left(e^{j\omega}
ight)=rac{1}{2\pi}W_{lag}\left(e^{j\omega}
ight)\star\hat{P}_{per}\left(e^{j\omega}
ight)$$

where $W_{lag}\left(e^{j\omega}
ight)$ is centred around $\omega pprox$ 0.

• Loosely speaking, $W_{lag}\left(e^{j\omega}
ight)$ is a rectangular box.

The periodogram The modified periodogram Blackman-Tukey's method: smoothed period.

Blackman-Tukey's method

• BT's method can also be explained from

$$\hat{P}_{per}(e^{j\omega}) = \mathcal{F}(\hat{r}_{x}[n]).$$

• Taking the inverse transform of $\hat{P}_{BT}\left(e^{j\omega_{1}}
ight)$ gives

$$\hat{r}_{BT}[n] = w_{lag}[n]\hat{r}_{x}[n]$$

 \rightsquigarrow estimates $\hat{r}_{x}[n]$ which are less reliable are given a smaller weight $w_{lag}[n]!$

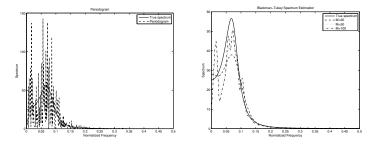
• A simple weight function (used below):

$$w_{lag}[n] = egin{cases} rac{M-|n|}{M} & ext{if } |k| \leq M \ 0 & ext{otherwise.} \end{cases}$$

The periodogram The modified periodogram Blackman-Tukey's method: smoothed period.

Blackman-Tukey's method

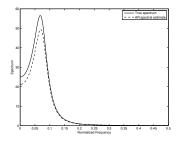
• One can show that BT reduces variances but increases bias.



• Small *M*: 1) gives a wide window $W_{lag}(e^{j\omega})$ 2) makes $P_{BT}(e^{j\omega})$ smooth 3) gives a bias in $P_{BT}(e^{j\omega})$, especially where $P_x(e^{j\omega})$ varies quickly.

An illustration

- The AR-parameters can be estimated using the normal equations.
- Works very well for above example:



 \sim → low variance since we only have two parameters to estimate! \sim → bias may be large if spectrum is not \approx AR.

Learning objectives

After today's lecture you should be able to

- Describe what the **periodogram** is and list its most important properties.
- Explain why the **modified periodogram** is sometimes an important improvement.
- Describe why **Blackman-Tukey's method** has lower variance than the periodogram.
- Derive how to estimate AR-parameters from data.
- \rightsquigarrow abilities that will help you to understand laboration 2!