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Problem formulation
General solution

Filtering solutions

Reviewing L11-L13
What have we done so far?

Signal models (L11-L12)
Nonparametric models: ACF and PSD.
Parametric models: AR, MA and ARMA.

Signal model estimation (L13)
Nonparametric spectral estimation: the periodogram.
Pros:

fast to compute
asymptotically unbiased.

Cons:
limited resolution for finite N:
 the modified periodogram improves this
large variance for all N:
 Blackman-Tukey’s method lowers variance.

Parametric spectral estimation: AR-estimation.
1 Estimate rx [k] from data.
2 Reformulate Yule-Walker to get â = R−1

x rx .
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Problem formulation
General solution

Filtering solutions

Learning objectives

After today’s lecture you should be able to

explain what type of problems Wiener-filters can solve.

derive the Wiener-Hopf (WH) equations.

use the WH-equations to derive a causal FIR Wiener filter.

use the WH-equations to derive a non-causal IIR Wiener
filter.

Compute the mean squared error (MSE) of a Wiener-filter.
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Filtering, smoothing and prediction

Let s[n] and w [n] be zero mean, wide sense stationary
processes and

x [n] = s[n] + w [n].

Objective

Select H(z) to make e[n] as ”small” as possible

H(z)x [n]
d̂ [n]

d [n]

e[n] = d̂ [n]− d [n]
−

Small could mean different things. We use mean squared error

E
{
e[n]2

}
,

since this is easy to minimize.
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Filtering, smoothing and prediction

Based on measurements collected up until now, we encounter three
common problems (k > 0):

Filtering – estimating current signal values, d [n] = s[n].
Applications: positioning, control systems, noise or echo
cancellation, etc.

Smoothing – estimating past signal values, d [n] = s[n − k].
Applications: signal analysis, image processing, system
identification (modelling).

Prediction – estimating future signal values, d [n] = s[n + k].
Applications: decision making, planning, weather forecasts,
etc.
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Filtering, smoothing and prediction

These problems can be illustrated as

Smoothing:

Filtering:

Prediction:

time

Time of interest
Measurements
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Filtering, smoothing and prediction

We seek a linear estimator (filter)

d̂ [n] = h[n] ? x [n] =
∑
k

h[k]x [n − k]

of d [n].

As mentioned above, we wish to minimize the mean square
error (MSE),

MSE(h) = E


(

d [n]−
∑
k

h[k]x [n − k]

)2


where the vector h contains the impulse response coefficients
h[k].

The resulting Wiener filter d̂ [n] is a linear minimum mean
square error (LMMSE) estimator.
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Problem formulation
General solution

Filtering solutions
Wiener-Hopf equations

Wiener-Hopf (W-H) equations

The W-H equations are very important and can be used to
solve all the problems mentioned above.

Objective: (again) We wish to minimize

MSE(h) = E


(

d [n]−
∑
k

h[k]x [n − k]

)2


with respect to h.

Derivation 1: the function is quadratic in h
⇒ it is convex in h
⇒ no local optima (except for the global optimum)
⇒ sufficient to differentiate and set to zero!
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Problem formulation
General solution

Filtering solutions
Wiener-Hopf equations

Wiener-Hopf (W-H) equations
Differentiate the MSE:

∂

∂h[t]
MSE(h) =

∂

∂h[t]
E


(

d [n]−
∑
k

h[k]x [n − k]

)2


= E

{
2

(
d [n]−

∑
k

h[k]x [n − k]

)
(−x [n − t])

}
= −2rdx [t] + 2

∑
k

h[k]rx [t − k]

Setting this derivative to zero gives the

Wiener-Hopf (WH) equations∑
k

h[k]rx [t − k] = rdx [t],

for all t where h[t] is free to select.
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Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter

FIR filters

Suppose H(z) is a causal FIR filter:

d̂ [n] =
p−1∑
n=0

h[k]x [n − k].

The W-H eq’s can be written as
rx [0] rx [1] . . . rx [p − 1]
rx [1] rx [0] . . . rx [p − 2]
...

...
. . .

...
rx [p − 1] rx |p − 2] . . . rx [0]


︸ ︷︷ ︸

Rx


h[0]
h[1]
...

h[p − 1]


︸ ︷︷ ︸

h

=


rdx [0]
rdx [1]

...
rdx [p − 1]


︸ ︷︷ ︸

rdx

which yields that

hopt = R−1
x rdx .
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Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter

What is the minimum MSE?

The minimum MSE can be calculated by plugging in hopt:

E
{
e2
min[n]

}
= E

{
emin[n]

(
d [n]− d̂opt[n]

)}
=
{
Note: d̂opt ⊥ e[n]

}
= E

{(
d [n]−

p−1∑
k=0

hopt[k]x [n − k]

)
d [n]

}

= rd [0]−
p−1∑
k=0

hopt[k]rdx [k] = rd [0]− rTdxR
−1
x rdx

Special case: if d [n] and x [n] are uncorrelated, then d̂ [n] = 0
and the MSE is rd [0].
In general, the more correlated (similar) x [n] is to d [n] the
better is the estimate d̂ [n]!
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Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter

Learning objectives

After today’s lecture you should be able to

explain what type of problems Wiener-filters can solve.

derive the Wiener-Hopf (WH) equations.

use the WH-equations to derive a causal FIR Wiener filter.

use the WH-equations to derive a non-causal IIR Wiener
filter.

Compute the mean square error (MSE) of a Wiener-filter.
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