MVE136 Random Signals Analysis

Written exam Monday 20 August 20128.30 am - 12.30 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Beta or 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
Grades: 12,18 and 24 points for grades 3,4 and 5 , respectively. Good luck!
Task 1. A pair of nonnegative integer valued random variables (X, Y) have joint probability generating function $H_{X, Y}\left(z_{1}, z_{2}\right)=\mathbf{E}\left\{z_{1}^{X} z_{2}^{Y}\right\}$ given by

$$
H_{X, Y}\left(z_{1}, z_{2}\right)=\frac{1}{1+a\left(1-z_{1}\right)+b\left(1-z_{2}\right)} \quad \text { for } 0 \leq z_{1}, z_{2} \leq 1
$$

where $a, b>0$ are real constants. Find $\mathbf{E}\left\{X^{2} Y\right\}$. (5 points)
Task 2. Show by example that the random process $Z(t)=X(t)+Y(t)$ may be a wide sense stationary process even though the random processes $X(t)$ and $Y(t)$ are not.

Task 3. Consider a discrete time Markov chain $X(n)$ with state space E, initial distribution $\pi(0)$ and transition probability matrix P given by

$$
E=\{0,1\}, \quad \pi(0)=\left[\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{ll}
2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3
\end{array}\right],
$$

respectively. Find the probability $\mathbf{P}\{X(5)=1 \mid X(2)=1\}$. (5 points)
Task 4. Let $X(t)$ be a continuous-time random process with power spectral density $S_{X X}(f)$. The derivative process of $X(t)$ is defined as $X^{\prime}(t)=\lim _{h \rightarrow 0}(X(t+h)-X(t)) / h$ whenever this limit is well-defined in a suitable sense. Show that the cross spectral density between $X(t)$ and $X^{\prime}(t)$ is given by $S_{X X^{\prime}}(f)=j 2 \pi f S_{X X}(f)$. (5 points)

Task 5. Let a pair of zero-mean jointly Gaussian continuous time processes $X_{1}(t)$ and $X_{2}(t)$ be inputs to linear filters with impulse responses $h_{1}(t)$ and $h_{2}(t)$, respectively, and corresponding outputs $Y_{1}(t)$ and $Y_{2}(t)$. Under what exact (i.e., necessary and sufficient) conditions on the crosscorrelation function $R_{X_{1} X_{2}}\left(t_{1}, t_{2}\right)=\mathbf{E}\left\{X_{1}\left(t_{1}\right) X_{2}\left(t_{2}\right)\right\}$ are two output values $Y_{1}(s)$ and $Y_{2}(t)$ independent? (5 points)

Task 6. Suppose $x[n]$ is an $\operatorname{AR}(1)$ process with $a_{1}=0.5$. Derive and illustrate (plot) the power spectral density of $x[n]$, assuming that the white noise input has variance 2 .

MVE136 Random Signals Analysis

Solutions to written exam Monday 20 August 2012

Task 1. Proceeding as in Example 5.19 in the book of Miller and Childers we find that $\mathbf{E}\left\{X^{2} Y\right\}=6 a^{2} b+2 a b$.

Task 2. This is one of the home exercises listed for the course. For example, given any wide sense stationary process $Z(t)$ we may take $X(t)=Z(t) / 2-t$ and $Y(t)=Z(t) / 2+t$.

Task 3. We have $\mathbf{P}\{X(5)=1 \mid X(2)=1\}=\left(P^{3}\right)_{1,1}$ (i.e., the lower diagonal element of the third power of P), which by elementary matrix calculations equals $14 / 27$.

Task 4. As $R_{X X^{\prime}}(\tau)=\mathbf{E}\left\{X(t) \lim _{h \rightarrow 0}(X(t+\tau+h)-X(t+\tau)) / h\right\}=\lim _{h \rightarrow 0} \mathbf{E}\{X(t)(X($ $t+\tau+h)-X(t+\tau)) / h\}=\lim _{h \rightarrow 0}\left(R_{X X}(\tau+h)-R_{X X}(\tau)\right) / h=R_{X X}^{\prime}(\tau)$, we have $S_{X X^{\prime}}(f)$ $=\int_{-\infty}^{\infty} R_{X X^{\prime}}(\tau) \mathrm{e}^{-j 2 \pi f \tau} d \tau=\int_{-\infty}^{\infty} R_{X X}^{\prime}(\tau) \mathrm{e}^{-j 2 \pi f \tau} d \tau=j 2 \pi f \int_{-\infty}^{\infty} R_{X X}(\tau) \mathrm{e}^{-j 2 \pi f \tau} d \tau=$ $j 2 \pi f S_{X X}(f)$.

Task 5. As the outputs $Y_{1}(s)$ and $Y_{2}(t)$ are jointly Gaussian, the exact condition is that their crosscorrelation is zero, which is to say that $R_{Y_{1} Y_{2}}(s, t)=\mathbf{E}\left\{\left(\int_{-\infty}^{\infty} h_{1}(u) X_{1}(s-\right.\right.$ $\left.u) d u)\left(\int_{-\infty}^{\infty} h_{2}(v) X_{2}(t-v) d v\right)\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{1}(u) h_{2}(v) \mathbf{E}\left\{X_{1}(s-u) X_{2}(t-v)\right\} d u d v=$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{1}(u) h_{2}(v) R_{X_{1} X_{2}}(s-u, t-v) d u d v=0$.

Task 6. It is given that

$$
x[n]+0.5 x[n-1]=e[n],
$$

where $e[n]$ is a white noise process such that $E\left\{e[n]^{2}\right\}=2$. An equivalent description is that $x[n]$ is the output from a linear system, with the transfer function

$$
H(z)=\frac{1}{1+0.5 z^{-1}},
$$

where $e[n]$ is the input signal. The PSD of $x[n]$ is therefore

$$
\begin{aligned}
P_{x}\left(e^{j \omega}\right) & =\left|H\left(e^{j \omega}\right)\right|^{2} P_{e}\left(e^{j \omega}\right) \\
& =\frac{\sigma_{e}^{2}}{\left|1+0.5 e^{-j \omega}\right|^{2}}=\frac{2}{\left|1+0.5 e^{-j \omega}\right|^{2}} .
\end{aligned}
$$

In order to plot (sketch) $P_{x}\left(e^{j \omega}\right)$ it helps to notice that $H(z)$ has a pole in $z=-0.5$, since this tells us that it is a high-pass filter. Further, it is easy to see that $P_{x}\left(e^{j \pi}\right)=8$. A detailed plot of PSD is given in Figure 1 below.

Figure 1: The power spectral density of $x[n]$.

