MVE136 Random Signals Analysis

Written exam Monday 20 August 2012 8.30 am - 12.30 pm

Teacher and Jour: Patrik Albin, telephone 070 6945709.

AIDS: Beta or 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.

Grades: 12, 18 and 24 points for grades 3, 4 and 5, respectively. Good Luck!

Task 1. A pair of nonnegative integer valued random variables (X, Y) have joint probability generating function $H_{X,Y}(z_1, z_2) = \mathbf{E}\{z_1^X z_2^Y\}$ given by

$$H_{X,Y}(z_1, z_2) = \frac{1}{1 + a(1 - z_1) + b(1 - z_2)}$$
 for $0 \le z_1, z_2 \le 1$,

where a, b > 0 are real constants. Find $\mathbf{E}\{X^2Y\}$. (5 points)

Task 2. Show by example that the random process Z(t) = X(t) + Y(t) may be a wide sense stationary process even though the random processes X(t) and Y(t) are not.

(5 points)

Task 3. Consider a discrete time Markov chain X(n) with state space E, initial distribution $\pi(0)$ and transition probability matrix P given by

$$E = \{0, 1\}, \quad \pi(0) = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix} \text{ and } P = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix},$$

respectively. Find the probability $P\{X(5)=1|X(2)=1\}$. (5 points)

Task 4. Let X(t) be a continuous-time random process with power spectral density $S_{XX}(f)$. The derivative process of X(t) is defined as $X'(t) = \lim_{h\to 0} (X(t+h) - X(t))/h$ whenever this limit is well-defined in a suitable sense. Show that the cross spectral density between X(t) and X'(t) is given by $S_{XX'}(f) = j2\pi f S_{XX}(f)$. (5 points)

Task 5. Let a pair of zero-mean jointly Gaussian continuous time processes $X_1(t)$ and $X_2(t)$ be inputs to linear filters with impulse responses $h_1(t)$ and $h_2(t)$, respectively, and corresponding outputs $Y_1(t)$ and $Y_2(t)$. Under what exact (i.e., necessary and sufficient) conditions on the crosscorrelation function $R_{X_1X_2}(t_1, t_2) = \mathbf{E}\{X_1(t_1)X_2(t_2)\}$ are two output values $Y_1(s)$ and $Y_2(t)$ independent? (5 points)

Task 6. Suppose x[n] is an AR(1) process with $a_1 = 0.5$. Derive and illustrate (plot) the power spectral density of x[n], assuming that the white noise input has variance 2.

(5 points)

MVE136 Random Signals Analysis

Solutions to written exam Monday 20 August 2012

Task 1. Proceeding as in Example 5.19 in the book of Miller and Childers we find that $\mathbf{E}\{X^2Y\} = 6\,a^2b + 2\,a\,b$.

Task 2. This is one of the home exercises listed for the course. For example, given any wide sense stationary process Z(t) we may take X(t) = Z(t)/2 - t and Y(t) = Z(t)/2 + t.

Task 3. We have $P\{X(5)=1|X(2)=1\}=(P^3)_{1,1}$ (i.e., the lower diagonal element of the third power of P), which by elementary matrix calculations equals 14/27.

Task 4. As $R_{XX'}(\tau) = \mathbf{E} \{ X(t) \lim_{h \to 0} (X(t+\tau+h) - X(t+\tau))/h \} = \lim_{h \to 0} \mathbf{E} \{ X(t)(X(t+\tau+h) - X(t+\tau))/h \} = \lim_{h \to 0} (R_{XX}(\tau+h) - R_{XX}(\tau))/h = R'_{XX}(\tau)$, we have $S_{XX'}(f) = \int_{-\infty}^{\infty} R_{XX'}(\tau) e^{-j2\pi f \tau} d\tau = \int_{-\infty}^{\infty} R'_{XX}(\tau) e^{-j2\pi f \tau} d\tau = j2\pi f \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j2\pi f \tau} d\tau = j2\pi f S_{XX}(f)$.

Task 5. As the outputs $Y_1(s)$ and $Y_2(t)$ are jointly Gaussian, the exact condition is that their crosscorrelation is zero, which is to say that $R_{Y_1Y_2}(s,t) = \mathbf{E}\{(\int_{-\infty}^{\infty} h_1(u)X_1(s-u)du)(\int_{-\infty}^{\infty} h_2(v)X_2(t-v)dv)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_1(u)h_2(v)\mathbf{E}\{X_1(s-u)X_2(t-v)\}dudv = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_1(u)h_2(v)R_{X_1X_2}(s-u,t-v)dudv = 0.$

Task 6. It is given that

$$x[n] + 0.5x[n-1] = e[n],$$

where e[n] is a white noise process such that $E\{e[n]^2\}=2$. An equivalent description is that x[n] is the output from a linear system, with the transfer function

$$H(z) = \frac{1}{1 + 0.5z^{-1}},$$

where e[n] is the input signal. The PSD of x[n] is therefore

$$P_x\left(e^{j\omega}\right) = \left|H\left(e^{j\omega}\right)\right|^2 P_e\left(e^{j\omega}\right)$$
$$= \frac{\sigma_e^2}{\left|1 + 0.5e^{-j\omega}\right|^2} = \frac{2}{\left|1 + 0.5e^{-j\omega}\right|^2}.$$

In order to plot (sketch) $P_x\left(e^{j\omega}\right)$ it helps to notice that H(z) has a pole in z=-0.5, since this tells us that it is a high-pass filter. Further, it is easy to see that $P_x\left(e^{j\pi}\right)=8$. A detailed plot of PSD is given in Figure 1 below.

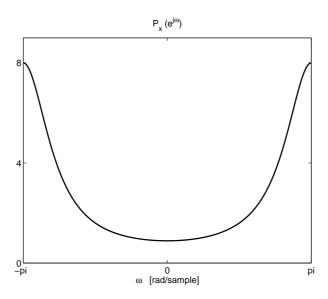


Figure 1: The power spectral density of x[n].