MVE136 Random Signals Analysis – Test Exam

AIDS: Beta <u>or</u> 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. GOOD LUCK!

Task 1. Let (X, Y) be a continuous random variable with PDF $f_{X,Y}(x, y) = e^{-x-y-xy}$ $/(\int_0^\infty (1+z)^{-1} e^{-z} dz)$ for $x, y \ge 0$ (and 0 otherwise). Find $\mathbf{E}\{X | Y = y\}$. (5 points) **Task 2.** Find the probability Pr(X(1)+X(2)+X(3) > 6) for a continuous time WSS Gaussian process X(t) with mean $\mu_X = 1$ and autocorrelation function $R_{XX}(\tau) = e^{-|\tau|} + 1$ for $\tau \in \mathbb{R}$. (5 points)

Task 3. Consider a discrete time Markov chain X(n) with state space E and transition probability matrix P given by

$$E = \{0, 1\}$$
 and $P = \begin{bmatrix} 1/2 & 1/2 \\ 1/4 & 3/4 \end{bmatrix}$.

respectively. What initial distribution $\pi(0)$ of the chain will give a distribution $\pi(2)$ of the value of the chain X(2) at time n = 2 given by $\pi(2) = [1/3 \ 2/3]$? (5 points)

Task 4. The PSD $S_{XX}(f)$ of a continuous time WSS process X(t) has the properties to be real and symmetric (=even). Prove one of these properties. (5 points)

Task 5. A WSS discrete-time random process X(n) with PSD $S_{XX}(f)$ is input to two different LTI systems with transfer functions $H_1(f)$ and $H_2(f)$, respectively. Find the cross spectral density $S_{Y_1Y_2}(f)$ between the outputs $Y_1(n)$ and $Y_2(n)$ from the two LTI systems. (5 points)

Task 6. Compute the autocorrelation function $r_x[n]$ for n = 0 and n = 1 when x[n] is an AR(1)-process with parameter $a_1 = 0.7$. You can assume that the input noise has variance $\sigma_e^2 = 1$. (5 points)