MVE136 Random Signals Analysis

Written exam Monday 17 August 2015 2-6 pm

TEACHER AND JOUR: Patrik Albin, telephone 070 6945709.

AIDS: Beta <u>or</u> 2 sheets (4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Find Pr(X(1) = 1) for a Poisson process X(t) with $E[X(2)^2] = 6$. (5 points)

Task 2. Let X(t) be a WSS Gaussian process such that $Pr(X(1)+X(2) \le 3) = \Phi(1/3)$ and $Pr(X(1)+X(2) \le 4) = \Phi(1/2)$, where as usual $\Phi(x)$ denotes the standard Gaussian CDF. Find the mean function $\mu_X(t) = E[X(t)]$ of the process X(t). (5 points)

Task 3. Consider a Markov chain X_k with states 0 and 1, and with $X_0 = 0$. Find the transition matrix P if it is known that $E[X_1] = E[X_2] = 1/2$. (5 points)

Task 4. Write a little essay providing the basic ideas and techniques of spectral estimation for WSS random processes. (5 points)

Task 5. A continuous time LTI system has input $X(t) = U \cos(\omega_0 t) + V \sin(\omega_0 t)$, where U and V are independent standard normal random variables and ω_0 is a constant. Find the impulse response h(t) if the output is $Y(t) = U \sin(\omega_0 t) - V \cos(\omega_0 t)$. (5 points) **Task 6.** Your task here is to derive the Wiener-Hopf equations for an FIR-filter of

order 2. To be more specific, suppose that the impulse response of a linear filter is

$$h[n] = h_0 \,\delta[n] + h_1 \,\delta[n-1] + h_2 \,\delta[n-2],$$

and that the input signal is a WSS signal x[n]. Derive a matrix equation that determines the filter coefficients h_0 , h_1 and h_2 so that the output from the filter $\hat{d}[n]$ minimizes $E\left[(d[n] - \hat{d}[n])^2\right]$. See Figure 1 below for an illustration. You may use the orthogonality principle to derive the equation asked for if you want. (5 points)

Figure 1: An illustration of the relation between x[n], h[n], $\hat{d}[n]$, d[n] and the filtering error e[n] that we seek to minimize.

MVE136 Random Signals Analysis

Solutions to written exam 17 August 2015

Task 1. As $E[X(2)^2] = 2\lambda + (2\lambda)^2 = (2\lambda + 1/2)^2 - 1/4$ equals 6 = 24/4 we have $2\lambda = -1/2 \pm \sqrt{1/4 + 24/4} = -1/2 \pm 5/2 = 2$, so that $\lambda = 1$ and $\Pr(X(1) = 1) = \lambda e^{-\lambda} = 1/e$.

Task 2. As X(t) is WSS the mean function is constant $\mu_X(t) = \mu_X$. As X(1)+X(2) is $N(m, \sigma^2)$ -distributed with $m = E[X(1)+X(2)] = 2\mu_X$, we have $\Pr(X(1)+X(2) \le 3) = \Phi((3-2\mu_X)/\sigma)$ and $\Pr(X(1)+X(2) \le 4) = \Phi((4-2\mu_X)/\sigma)$, so that $(3-2\mu_X)/\sigma = 1/3$ and $(4-2\mu_X)/\sigma = 1/2$, giving $\mu_X = 1/2$ (and $\sigma = 6$).

Task 3. As $E[X_1] = 0 \cdot p_{0,0} + 1 \cdot p_{0,1} = p_{0,1} = 1/2$ we have $p_{0,0} = 1 - p_{0,1} = 1/2$. As $E[X_2] = 0 \cdot \Pr(X_2 = 0) + 1 \cdot \Pr(X_2 = 1) = \Pr(X_2 = 1) = ([1 \ 0] P^2)_1 = \ldots = 1/4 + p_{1,1}/2 = 1/2$ we have $p_{1,1} = 1/2$ and $p_{1,0} = 1 - p_{1,1} = 1/2$.

Task 4. See Section 10.4 in the book by Miller and Childers.

Task 5. It is easy to see mathematically or figure out more "hands-on" that the impulse response must be $h(t) = \delta(t - \pi/(2\omega_0))$.

Task 6. According to the orthogonality principle, the optimal filter must satisfy

$$\mathbf{E}\left[(d[n] - \hat{d}[n])x[n]\right] = \mathbf{E}\left[(d[n] - \hat{d}[n])x[n-1]\right] = \mathbf{E}\left[(d[n] - \hat{d}[n])x[n-2]\right] = 0,$$

since the error $d[n] - \hat{d}[n]$ should be orthogonal to the data x[n], x[n-1] and x[n-2]. By substituting $\hat{d}[n] = h_0 x[n] + h_1 x[n-1] + h_2 x[n-2]$ above we readily obtain

$r_x[0]$	$r_x[1]$	$r_x[2]$	$\begin{bmatrix} h_0 \end{bmatrix}$		$r_{dx}[0]$	
$r_x[1]$	$r_x[0]$	$r_x[1]$	h_1	=	$r_{dx}[1]$	
$r_x[2]$	$r_x[1]$	$r_x[0]$	h_2		$r_{dx}[2]$	

These are the Wiener-Hopf equations that we were asked to derive. Instead of using the orthogonality principle, it is also possible to derive the Wiener-Hopf equations by setting the derivatives of our cost function to zero,

$$\frac{\partial}{\partial h_i} \mathbf{E}\left[(d[n] - \hat{d}[n])^2 \right] = 0 \quad \text{for } i = 0, 1, 2.$$