MVE136 Random Signals Analysis

Written exam Tuesday 5 January 2016 2-6 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
AIDS: Beta or 2 sheets ($=4$ pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Let $X(t)$ be a continuous time WSS random process with autocorrelation function $R_{X X}(\tau)$. Given a constant $\varepsilon>0$, form a new process $Y(t)$ as $Y(t)=(X(t+$ $\varepsilon)-X(t)) / \varepsilon$ for $t \in \mathbb{R}$. Is $Y(t)$ WSS? (5 points)

Task 2. Let $X_{1}(t), \ldots, X_{n}(t)$ be independent Poisson processes with arrival rates $\lambda_{1}, \ldots, \lambda_{n}>0$, respectively. Show that $X(t)=X_{1}(t)+\ldots+X_{n}(t)$ is also a Poisson process at find its arrival rate λ. (5 points)

Task 3. Find the transition matrix P for a Markov chain $X[k]$ with two states and stationary distribution $\pi=\left[\begin{array}{ll}1 / 2 & 1 / 2\end{array}\right] \quad$ (5 points)

Task 4. Let $\{W(t)\}_{t \geq 0}$ be a random process with autocorrelation function $R_{W W}(s, t)=$ $\min \{s, t\}$. Form a new process $Y(t)$ as $Y(t)=\int_{0}^{t} W(u) d u$ for $t \geq 0$. Find the autocorrelation function $R_{Y Y}(s, t)$ for $0 \leq s \leq t . \quad$ (5 points)

Task 5. Give a proof of the formula for the Wiener filter according to Section 11.6 in the book by Miller \& Childers for the case when the noise process $N(t)$ is zero-mean and independent of the input signal (the signal to be estimated) $Z(t)$.

Task 6. We are interested in estimating the spectrum of a stationary stochastic process, but unfortunately we have only been able to collect six data points $x[0]=-1.4, x[1]=$ $0.1, x[2]=-0.7, x[3]=-1, x[4]=0.3$ and $x[5]=1.5$. Given that we have a small data set, we decide to use a simple $\operatorname{AR}(1)$ model. Use the data to estimate the AR model and its spectrum (for simplicity you can assume that the variance of the input noise is $\sigma_{e}^{2}=1$). We would also like you to sketch the spectrum.
(5 points)

MVE136 Random Signals Analysis

Solutions to written exam 5 January 2016

Task 1. Elementary calculations show that $\mu_{Y}(t)=0$ and $R_{Y Y}(t, t+\tau)=\left(2 R_{X X}(\tau)-\right.$ $\left.R_{X X}(\tau-\varepsilon)-R_{X X}(\tau+\varepsilon)\right) / \varepsilon^{2}$, neither of which depend on t, so that $Y(t)$ is WSS.

Task 2. Just check that the defining properties of a Poisson process at the beginning of Section 8.6 in the book by Miller \& Childers remain valid for the process $X(t)$ with arrival rate $\lambda=\lambda_{1}+\ldots+\lambda_{n}$.

Task 3. The equation $\pi=\pi P$ with $\pi=[1 / 21 / 2]$ gives

$$
\left[\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right] \Leftrightarrow\left[\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right]=[(1-a+b) / 2(1+a-b) / 2] \Leftrightarrow a=b .
$$

Task 4. $R_{Y Y}(s, t)=E\left[\left(\int_{0}^{s} W(u) d u\right)\left(\int_{0}^{t} W(v) d v\right)\right]=\int_{u=0}^{u=s} \int_{v=0}^{v=t} E[W(u) W(v)] d u d v=$ $\int_{u=0}^{u=s} \int_{v=0}^{v=s} \min \{u, v\} d u d v+\int_{u=0}^{u=s} \int_{v=s}^{v=t} \min \{u, v\} d u d v=2 \int_{u=0}^{u=s} \int_{v=0}^{v=u} v d v d u+\int_{u=0}^{u=s} \int_{v=s}^{v=t}$ $u d v d u=2 \int_{0}^{s} u^{2} / 2 d u+\int_{0}^{s}(t-s) u d u=\ldots=t s^{2} / 2-s^{3} / 6$.

Task 5. See Section 11.6 in the book by Miller \& Childers.
Task 6. Let us follow the standard strategy:

1. use the data to estimate the autocorrelation function $r_{x}[k]$,
2. estimate the AR parameter a_{1} from the autocorrelation function, and
3. compute the spectrum, $P_{x}\left(\mathrm{e}^{j \omega}\right)$ once we have found the AR model.

To learn more about for which values of k that we need to estimate $r_{x}[k]$ we can first look at how we intend to estimate the AR parameter. The $\mathrm{AR}(1)$ difference equation is

$$
\begin{equation*}
x[n]+a_{1} x[n-1]=e[n] \tag{1}
\end{equation*}
$$

and we can derive the Yule-Walker equations by multiplying both sides of (1) by $x[n-k]$ for $k \geq 0$ and take expectations. We then get

$$
r_{x}[k]+a_{1} r_{x}[k-1]=E\left[\left(x[n]+a_{1} x[n-1]\right) x[n-k]\right]=E[e[n] x[n-k]]= \begin{cases}1 & \text { if } k=0 \\ 0 & \text { if } k>0\end{cases}
$$

Considering that we only have one parameter to estimate it is sufficient to estimate $r_{x}[0]$ and $r_{x}[1]$ since that would enable us to use $r_{x}[0]+a_{1} r_{x}[1]=1$ to find a_{1}. (Recall that $r_{x}[k]=r_{x}[-k]$ for wide sense stationary processes).

To estimate the autocorrelation function we can use the estimator

$$
\hat{r}_{x}[k]=\frac{1}{N} \sum_{n=k}^{N-1} x[n] x[n-k],
$$

under the assumption that $0 \leq k \leq N-1$. From this we obtain

$$
\left\{\begin{array}{l}
\hat{r}_{x}[0]=\left[(-1.4)^{2}+0.1^{2}+(-0.7)^{2}+(-1)^{2}+0.3^{2}+1.5^{2}\right] / 6 \approx 0.97 \\
\hat{r}_{x}[1]=[(-1.4) \cdot 0.1+0.1 \cdot(-0.7)+(-0.7) \cdot(-1)+(-1) \cdot 0.3+0.3 \cdot 1.5] / 6 \approx 0.11
\end{array}\right.
$$

We can now solve for the AR parameter

$$
a_{1}=\frac{1-r_{x}[0]}{r_{x}[1]} \approx \frac{1-\hat{r}_{x}[0]}{\hat{r}_{x}[1]} \approx 0.31
$$

Assuming that $x[n]$ is an $\operatorname{AR}(1)$ model, see (1), it can described as white noise propagated through a linear and time invariant filter with the transfer function

$$
H(z)=\frac{1}{1+a_{1} z^{-1}}
$$

To sketch the spectrum we note that the transfer function has a pole at $z=-a_{1} \approx$ -0.31 . This implies that the region of convergence (ROC) of this z-transform includes the unit circle (the ROC is outside the pole for causal filters), which means that the frequency response $H\left(\mathrm{e}^{j \omega}\right)$ exists. Further, we know that $\left|H\left(\mathrm{e}^{j \omega}\right)\right|$ is large close to the pole and small far from the pole. The spectrum is conveniently expressed as

$$
P_{x}\left(\mathrm{e}^{j \omega}\right)=\sigma_{e}^{2}\left|H\left(\mathrm{e}^{j \omega}\right)\right|^{2}=\left|H\left(\mathrm{e}^{j \omega}\right)\right|^{2}=\frac{1}{\left|1+a_{1} \mathrm{e}^{-j \omega}\right|^{2}}
$$

where we assume $a_{1} \approx 0.31$. An illustration of this spectrum is given in Figure 1 below.

Figure 1: An illustration of our approximation to the power spectral density $P_{x}\left(e^{j \omega}\right)$.

