MVE136 Random Signals Analysis

Written exam Monday 15 August 2016 2-6 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
AIDS: Beta or 2 sheets ($=4$ pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Let $X(t)$ and $Y(t)$ be independent Poisson processes with common arrival rate $\lambda>0$. Calculate the probability $P(X(1)-Y(1)=0 \mid X(1)+Y(1)=2)$.
(5 points)
Task 2. Calculate the mean function $\mu_{X}(t)$ and the autocorrelation function $R_{X X}(s, t)$ for the random process $X(t), t \geq 0$, given by $X(t)=\mathrm{e}^{-A t}$, where A is a unit mean exponentially distributed random variable. (5 points)

Task 3. Is it possible for a two state Markov chain not to have a stationary distribution?

Task 4. Let $X(t)$ be a stationary zero-mean unit variance Gaussian random process and form a new random process $Y(t)$ as $Y(t)=X(t)^{2}$. Calculate the crosscorrelation function $R_{X Y}(s, t)$. [Hint: It can be very useful to make use of the fact that $X(s)-$ $R_{X X}(t-s) X(t)$ and $X(t)$ are independent.] (5 points)

Task 5. If a WSS random process $X(t)$ with $\operatorname{PSD} S_{X X}(f)$ is input signal to an LTI system with transfer function $H(f)$, then the output signal $Y(t)$ from the system is WSS with PSD $S_{Y Y}(f)=|H(f)|^{2} S_{X X}(f)$: Prove this relation. (5 points)

Task 6. Consider a situation where we sample a time continuous wide sense stationary stochastic process $x_{a}(t)$. Suppose that the sampling frequency F_{s} is large, say at least 1000 Hz , and that we intend to estimate the power spectral density $P_{x}\left(\mathrm{e}^{j \omega}\right)$ using Bartlett's method with non-overlapping periodogram averaging, here denoted $\hat{P}_{x}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$. If we seek to obtain a frequency resolution less than 30 Hz a and relative variance

$$
\frac{\operatorname{Var}\left[\hat{P}_{x}\left(\mathrm{e}^{j \omega}\right)\right]}{P_{x}\left(\mathrm{e}^{j \omega}\right)^{2}} \lesssim \frac{1}{10}
$$

how many samples do we then need to collect (expressed as a function of F_{s})? For how many seconds do we need to collect data? (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 15 August 2016

Task 1. $\quad P(X(1)-Y(1)=0 \mid X(1)+Y(1)=2)$

$$
\begin{aligned}
& =\frac{P(X(1)-Y(1)=0, X(1)+Y(1)=2)}{P(X(1)+Y(1)=2)} \\
& =\frac{P(X(1)=Y(1)=1)}{P(X(1)=2, Y(1)=0)+P(X(1)=1, Y(1)=1)+P(X(1)=0, Y(1)=2)} \\
& =\frac{P(X(1)=1) P(Y(1)=1)}{P(X(1)=2) P(Y(1)=0)+P(X(1)=1) P(Y(1)=1)+P(X(1)=0) P(Y(1)=2)} \\
& =\frac{\left[\lambda /\left((1!) \mathrm{e}^{\lambda}\right)\right]^{2}}{\left[\lambda^{2} /\left((2!) \mathrm{e}^{\lambda}\right)\right]\left[\lambda^{0} /\left((0!) \mathrm{e}^{\lambda}\right)\right]+\left[\lambda /\left((1!) \mathrm{e}^{\lambda}\right)\right]^{2}+\left[\lambda^{0} /\left((0!) \mathrm{e}^{\lambda}\right)\right]\left[\lambda^{2} /\left((2!) \mathrm{e}^{\lambda}\right)\right]} \\
& =\frac{1}{2} .
\end{aligned}
$$

Task 2. $\mu_{X}(t)=E[X(t)]=E\left[\mathrm{e}^{-A t}\right]=\int_{0}^{\infty} \mathrm{e}^{-a t} \mathrm{e}^{-a} d a=1 /(1+t)$ and $R_{X X}(s, t)=$ $E[X(s) X(t)]=E\left[\mathrm{e}^{-A s} \mathrm{e}^{-A t}\right]=\ldots=1 /(1+s+t)$.

Task 3. A stationary distribution π exists if and only if we can solve

$$
\left\{\begin{array} { c }
{ [\begin{array} { l l }
{ \pi _ { 1 } } & { \pi _ { 2 } }
\end{array}] = [\begin{array} { l l }
{ \pi _ { 1 } } & { \pi _ { 2 } }
\end{array}] [\begin{array} { c c }
{ 1 - a } & { a } \\
{ b } & { 1 - b }
\end{array}] } \\
{ \pi _ { 1 } + \pi _ { 2 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ a \pi _ { 1 } = b \pi _ { 2 } } \\
{ \pi _ { 1 } + \pi _ { 2 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{cc}
\left\{\begin{array}{cc}
\pi_{1}=b /(a+b) & \text { if } a+b \neq 0 \\
\pi_{2}=a /(a+b) & \\
\pi_{1}+\pi_{2}=1 & \text { if } a+b=0
\end{array} . . . ~\right.
\end{array}\right.\right.\right.
$$

As this always have at least one solution a stationary distribution always exists!
Task 4. $R_{X Y}(s, t)=E[X(s) Y(t)]=E\left[X(s) X(t)^{2}\right]=E\left[\left(X(s)-R_{X X}(t-s) X(t)\right) X(t)^{2}\right]$ $+E\left[R_{X X}(t-s) X(t)^{3}\right]=E\left[X(s)-R_{X X}(t-s) X(t)\right] E\left[X(t)^{2}\right]+R_{X X}(t-s) E\left[X(t)^{3}\right]=$ $0+0=0$.

Task 5. See Section 11.1 in the book by Miller \& Childers.
Task 6. To solve this problem, it is a good idea to first summarize some of the results that we have learned in this course. For instance, if we have collected a long sequence of data, we know that the relative variance is roughly $1 / K$ where K is the number of segments that we split our data sequence in. To obtain the desired relative variance we thus need to select $K \geq 10$.

Another important result is that the resolution is $2 \pi / N \mathrm{rad} / \mathrm{s}$ for the periodogram and $2 \pi K / N$ for the averaged periodogram, where $M=N / K$ is the number of samples in the individual segments. To obtain a frequency resolution smaller than 30 Hz when
the sampling frequency is F_{s} we need to have a frequency resolution in discrete time which is smaller than $302 \pi / F_{s}=60 \pi / F_{s} \mathrm{rad} /$ sample. The conclusion from this is that N need to be sufficiently large in order to satisfy

$$
2 \pi K / N \leq 60 \pi / F_{s}
$$

From this inequality we get $N \geq F_{s} K / 30$ and if we recall that $K \geq 10$ we can conclude that we need to collect $N \geq F_{s} / 3$ samples. The number of samples that we need to collect therefore grows with the sampling frequency, but the time it takes to collect these samples is $N / F_{s}=1 / 3$ seconds for all sampling frequencies F_{s}.

