
MVE136 Random Signals Analysis

Written exam Wednesday 26 October 2016 2–6 pm

Teacher and Jour: Patrik Albin, telephone 070 6945709.

Aids: Beta or 2 sheets (=4 pages) of hand-written notes (computer print-outs and/or

xerox-copies are not allowed), but not both these aids.

Grades: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively.

Motivations: All answers/solutions must be motivated. Good luck!

Task 1. LetX(t) be a zero-mean and unit-variance stationary Gaussian random process

with autocorrelation function RXX(τ) and form a new random process Y (t) = X(t)2.

Express the cross-correlation function RY X(τ) = E[Y (t)X(t+τ)] = E[X(t)2X(t+τ)] in

terms of RXX(τ). [Hint: Make use of the fact that X(t)2 and X(t+τ)−RXX(τ)X(t)

are independent, since X(t) and X(t+τ)−RXX(τ)X(t) are independent since they are

Gaussian and uncorrelated.] (5 points)

Task 2. Consider a Poisson process X(t) with arrival rate λ > 0. Conditional on the

information that there is exactly one arrival in the time interval [0, 1], show that the

PDF of that arrival time T is uniformly distributed over the unit interval. [Hint: Note

that fT (t) =
d
dt
Pr(T ≤ t) = d

dt
Pr(X(t)=1 |X(1)=1).] (5 points)

Task 3. A hot dog vendor operates a hot dog stand where the number of hot dogs he

sells each day is modeled as a Poisson random variable with expected value α. Let X[k]

represent the number of hot dogs the vendor has in stock at the beginning of each day.

At the end of the day, if his stock of hot dogs has fallen below some minimal value β,

then the vendor immediately purchases enough new hot dogs to bring up his total stock

to γ for the next day. On the other hand, if at the end of the day the stock of hot dogs

is at least β, then the stock is not increased for the next days sails. Fine the transition

matrix for the Markov chain X[k]. (5 points)

Task 4. Consider the function R :Z→R given by R(0) = 1, R(±1) = α and R(±k) = 0

for k = 2, 3, . . . . For which values of the real number α is R(k) the autocorrelation

function of some WSS random process? (5 points)

Task 5. The input to a continuous time LTI system is a WSS continuous time random

process X(t) with autocorrelation function
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RXX(τ) =
Aω0

π

sin(ω0τ)

ω0τ
for τ ∈R,

where A,ω0 > 0 are constants, whilst the LTI system has impulse response of the same

form

h(t) =
ω1

π

sin(ω1t)

ω1t
for t∈R,

where ω1 > 0 is a constant. Find the autocorrelation function of the output Y (t) from

the filter. (5 points)

Task 6. Suppose that s[n] is an autoregressive (AR) process of second order with the

parameters σ2
s , a1 and a2, and that w[n] is a moving average (MA) process of second

order with the parameters σ2
w, b1 and b2. Your task is to find the best possible Wiener

filter that estimates s[n] from x[n] = s[n]+w[n], that is, x[n] is the input to the Wiener

filter and the output should be estimates of s[n]. You can assume that s[n] and w[n]

are uncorrelated.

One could imagine using a causal, anti-causal or non-causal filter which either has a

finite or infinite impulse response; which type of filter do you think has the potential of

yielding the smallest errors? Please motivate. Also, write down at least one description

of the optimal filter in terms of its difference equation, transfer function or frequency

responce (one of these three descriptions is enough). (5 points)
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MVE136 Random Signals Analysis

Solutions to written exam 26 October 2016

Task 1. We have RY X(τ) = E[X(t)2X(t+τ)] = E[X(t)2(X(t+τ)−RXX(τ)X(t))] +

E[X(t)2RXX(τ)X(t))] = E[X(t)2]E[X(t+τ)−RXX(τ)X(t)] +RXX(τ)E[X(t)3] = 0+

0 = 0.

Task 2. We have fT (t) = d
dt
Pr(T ≤ t) = d

dt
Pr(X(t) = 1 |X(1) = 1) = d

dt
Pr(X(t) =

1, X(1) = 1)/Pr(X(1) = 1) = d
dt
Pr(X(t) = 1, X(1)−X(t) = 0)/Pr(X(1) = 1) =

d
dt
Pr(X(t) = 1)Pr(X(1)−X(t) = 0)/Pr(X(1) = 1) = d

dt
Pr(X(t) = 1)Pr(X(1− t) =

0)/Pr(X(1)=1) = d
dt
(λt) e−λt e−λ(1−t)/(λ e−λ) = d

dt
t = 1 for t∈ [0, 1].

Task 3. The states (possible values) for X[k] are {β, . . . , γ} and lettning Y denote

a Poisson random variable with expected value α we have pi,j = Pr(i− Y = j) =

αi−j e−α/((i−j)!) for j = β, . . . , i and pi,γ = Pr(i− Y < β) =
∑∞

k=i−β+1 α
k e−α/(k!)

while pi,j = 0 for j = i+1, . . . , γ−1 unless i = j = γ in which case we instead have

pγ,γ = Pr(Y = 0) + Pr(Y > γ−β) = e−α +
∑∞

k=γ−β+1 α
k e−α/(k!).

Task 4. For R(k) to be an autocorrelation function it is necessary and sufficient that its

discrete time Fourier transform S(f) =
∑∞

k=−∞ e−j2πfkR(k) = 1+α (e−j2πf +ej2πf ) =

1 + 2α cos(2πf) in nonnegative, which in turn happens if and only if |α| ≤ 1/2.

Task 5. We have SXX(f) = ((Aω0)/π) rect(f/ω0)/ω0 = A rect(f/ω0)/π and similarly

H(f) = rect(f/ω1)/π, so that SY Y (f) = |H(f)|2SXX(f) = A rect(f/ω1)
2 rect(f/ω0)

/π3 = A rect(f/min{ω0, ω1})/π
3 which corresponds to

RY Y (τ) =
Amin{ω0, ω1}

π3

sin(min{ω0, ω1}τ)

min{ω0, ω1}τ
for τ ∈R.

Task 6. We can obtain the best possible performance by considering a non-causal,

infinite impulse response (IIR) filter,

d[n] =

∞
∑

k=−∞

h[k]x[n− k].

A short and simple argument for this is that the non-causal IIR filter has access to

more measurements than the other filters and should therefore be able to produce better

estimates. Also note that the other filter types, such as finite impulse response filters,

dFIR[n] =
N−1
∑

k=0

hFIR[k]x[n− k],
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are special cases of the non-causal IIR filter where we have introduced constraints on

the filter coefficients, e.g.,

hFIR[k] = 0 for k /∈ {0, 1, 2, . . . , N − 1}.

Clearly, introducing such constraints does not enable us to reach a better solution (a

solution with smaller errors) to the optimisation problem

min
{h[k]}

E
[

(s[n]− d[n])2
]

.

For non-causal IIR Wiener filters, we know that the optimal filter has the frequency

response

H
(

ejω
)

=
Pdx(e

jω)

Px(ejω)
.

Since d[n] = s[n], and w[n] and s[n] are uncorrelated, it holds that Pdx(e
jω) = Ps(e

jω),

and since it also holds that x[n] = s[n]+w[n], it follows that Px(e
jω) = Ps(e

jω)+Pw(e
jω).

The power spectral densities (PSD’s) of s[n] and w[n] are easily obtained from the

fact that they are AR and MA processes:

Ps(e
jω) =

σ2
s

∣

∣1 + a1ejω + a2ej2ω
∣

∣

2

Pw(e
jω) = σ2

w

∣

∣1 + b1e
jω + b2e

j2ω
∣

∣

2
.

Putting the pieces together, we get the final expression for the frequency response of

the optimal non-causal IIR Wiener filter

H
(

ejω
)

=
σ2
s

σ2
s + σ2

w

∣

∣1 + a1ejω + a2ej2ω
∣

∣

2∣
∣1 + b1ejω + b2ej2ω

∣

∣

2 .
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