
MVE136 Random Signals Analysis

Written exam Tuesday 20 December 2016 2–6 pm

Teacher and Jour: Patrik Albin, telephone 070 6945709.

Aids: Beta or 2 sheets (=4 pages) of hand-written notes (computer print-outs and/or

xerox-copies are not allowed), but not both these aids.

Grades: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively.

Motivations: All answers/solutions must be motivated. Good luck!

Task 1. The input to a discrete time LTI system is a WSS white noise process X[k]

with autocorrelation function RXX(k) = δ(k), whilst the output is given by Y [k] =

1
n

∑n−1
m=0X[k−m] for some interger n≥ 1. Show that the PSD of the output is SY Y (f)

= 1
n
+ 2

n2

∑n−1
m=1(n−m) cos(2πmf). (5 points)

Task 2. Let X(t) be a continuous time WSS zero-mean Gaussian random process

and form a new process Y (t) = X(t) cos(ωt+Θ) where ω is a constant and Θ is a

random variable that is uniformly distributed over [0, 2π) and independent of the process

X(t). Is Y (t) WSS? Is Y (t) Gaussian? (Remember that answers must be motivated

- a correct answer without a correct motivation gives no points!) [Hint: Recall that

2 cos(x) cos(y) = cos(x−y) + cos(x+y).] (5 points)

Task 3. For a Markov chain X[k], prove or disprove the following statement:

Pr
(

X[k] = ik
∣

∣X[k+1] = ik+1, . . . , X[k+m] = ik+m

)

= Pr
(

X[k] = ik
∣

∣X[k+1] = ik+1

)

.

(5 points)

Task 4. Which of the following five functions R1(τ) = e−|τ |, R2(τ) = e−τu(τ) (where

u(τ) = 1 for τ ≥ 0 and u(τ) = 0 for τ < 0), R3(τ) = e|τ |, R4(τ) = cos(τ) and R5(τ) =

sinc(τ) = sin(τ)/τ could be the autocorrelation function of a WSS random process?

(Remember that answers must be motivated - a correct answer without a correct mot-

ivation gives no points!) (5 points)

Task 5. Suppose that we observe a zero-mean WSS continuous time random process

X(t) with autocorrelation function RXX(τ) over a time interval (−∞, t). Based on this

observation we wish to predict a future process value X(t+t0) for a t0 > 0 by means of a

filter with impulse response h(t) whose output
∫∞
0 h(u)X(t−u) du will be our estimate
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of X(t+ t0). Find and equation (which do not have to be solved) for the h(u) that

minimizes the mean-square error E
{

(X(t+t0)−
∫∞
0 h(u)X(t−u) du)2

}

. (5 points)

Task 6. The topic in this problem is spectral estimation and periodogram averaging:

Consider a wide sense stationary signal x[n], with the power spectral density Px(e
jω),

illustrated in Figure 1 (a).

A friend of you, who does not have access to the true power spectral density, has col-

lected 1024 samples of x[n], based on which the periodogram has been computed. Your

friend also decided to compute two averaged periodograms using Bartlett’s method,

where the data was splitted into K = 16 and K = 64, non-overlapping segments, re-

spectively. In total your friend has thus computed three estimates of the power spectral

density: the periodogram, and the averaged periodograms with K = 16 and K = 64.

The three estimates are illustrated in Figure 1 (b)–(d), but we do not know which es-

timate is plotted in which figure. Please help your friend figure out the correspondence

between the three estimates and these figures. Note that it is important to clearly mo-

tivate your answer in order to receive any credits. Finally, we would also like you to

clarify the pros and cons with using a large versus a small value for K in terms of bias

and variance of the estimates. (5 points)
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Figure 1: The true power spectral density, Px(e
jω), is illustrated in (a), whereas the

content in (b), (c) and (d) show different version of the periodogram.
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MVE136 Random Signals Analysis

Solutions to written exam 20 December 2016

Task 1. It is easy to see that RY Y (k) = (n−|k|)/n2 for k = 0,±1, . . . , n−1 while

RY Y (k) = 0 for |k| ≥ n, which in turn gives SY Y (f) =
1
n2

∑n−1
m=−(n−1)(n−|m|) e−j2πfm

= 1
n
+ 2

n2

∑n−1
m=1(n−m) cos(2πmf).

Task 2. We have E{Y (t)} = E{X(t) cos(ωt+Θ)} = E{X(t)}E{cos(ωt+Θ)} = 0

and similarly E{Y (s)Y (t)} = E{X(s)X(t)}E{cos(ωs+Θ) cos(ωt+Θ)} = RXX(t−s)

E
{

1
2 cos(ω(t−s))+ 1

2 cos(ω(s+t)+2Θ)
}

= 1
2 RXX(t−s) cos(ω(t−s)) as E{cos(α+2Θ)}

= 0 by symmetry reasoning for any non-random constant α, so Y (t) is WSS. However,

Y (t) is not Gaussian (unless X(t) ≡ 0) as Y (0) = X(0) cos(Θ) and Y (3π/(2ω)) =

X(3π/(2ω)) cos(3π/2+Θ) = X(3π/(2ω)) sin(Θ) are uncorrelated E{Y (0)Y (3π/(2ω))}

= 1
2 RXX(3π/(2ω)) cos(3π/2) = 0 but clearly are not independent.

Task 3. The statement is true because

Pr
(

X[k] = ik
∣

∣X[k+1] = ik+1, . . . , X[k+m] = ik+m

)

=
Pr

(

X[k] = ik, X[k+1] = ik+1, . . . , X[k+m] = ik+m

)

Pr
(

X[k+1] = ik+1, . . . , X[k+m] = ik+m

)

=

( m
∏

ℓ=1

Pr
(

X[k+ℓ] = ik+ℓ

∣

∣X[k+ℓ−1] = ik+ℓ−1

)

)

Pr
(

X[k] = ik
)

( m
∏

ℓ=2

Pr
(

X[k+ℓ] = ik+ℓ

∣

∣X[k+ℓ−1] = ik+ℓ−1

)

)

Pr
(

X[k+1] = ik+1

)

=
Pr

(

X[k+1] = ik+1

∣

∣X[k] = ik
)

Pr
(

X[k] = ik
)

Pr
(

X[k+1] = ik+1

)

=
Pr

(

X[k+1] = ik+1, X[k] = ik
)

Pr
(

X[k] = ik
)

Pr
(

X[k+1] = ik+1

)

= Pr
(

X[k] = ik
∣

∣X[k+1] = ik+1

)

.

Task 4. The functionR2 does not fit with Property 8.4.2 in Miller and Childers evneness

of autocorrelation functions while the function R3 does not fit with Property 8.4.3 in

Miller and Childers of autocorrelation functions (as it is concave). Hence neither of

these two functions are autocorrelation functions. On the other hand the functions R1,

R4 and R5 all feautre repeatedly as examples of autocorrelation functions in the course

and are thus autocorrelation functions all three of them. This can also be established

directly by means of checking that their Fourier transform is non-negative real-valued

and symmetric, which in turn follows from inspection of Table E.1 in Miller and Childers.
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Task 5. According to the orthogonality principle the observed signal X(s) will be

orthogonal to the prediction error X(t+t0)−
∫∞
0 h(u)X(t−u) du for each s ∈ (−∞, t),

which is to say that RXX(t+t0−s)−
∫∞
0 h(u)RXX(t−u−s) du = 0 for s∈ (−∞, t).

Task 6. The periodogram has two important weaknesses: 1) for finite data sequence, it

has a bias in terms of finite resolution and 2) it has a large variance. The first weakness

disappears as the length, N , of the collected data sequence goes to infinity, since the

periodogram is asymptotically unbiased, but the variance converges to a constant, large

value as N increases. The idea behind periodogram averaging is to split the sequence

into many shorter sequences, and calculate the average of the periodograms for all of the

shorter sequences. The periodograms of the shorter sequences typically have larger bias

(since the sequences are shorter) but almost the same variance as the periodogram of

the larger sequences. By taking the average of these periodograms, we can thus reduce

the variance significantly but unfortunately we also increase the bias.

Among the three subfigures (a), (b) and (c), it is clear that (c) is by far the “noisiest”,

whereas (b) has a much smoother shape. In fact, the curve in subfigure (b) is so

smooth that we have not even been able to resolve the two peaks in the true power

spectral density. The estimate illustrated in (b) is thus Bartlett’s method with K = 64,

subfigure (c) shows the periodogram, whereas subfigure (d) contains the result from

using Bartlett’s method with K = 16. The trade-off that we are facing is that we

obtain a smoother curve when we increase K, but that we lose resolution.
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