MVE136 Random Signals Analysis Written exam Friday 27 October 2017 8.30–12.30

TEACHER: Patrik Albin. JOUR: Math PhD-student telephone 0317725325.

AIDS: Beta <u>or</u> 2 sheets (=4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Calculate the mean function $\mu_X(t)$ and the autocorrelation function $R_{XX}(s,t)$ for the continuous time random process X(t), $t \ge 0$, given by $X(t) = e^{-Ut}$, where U is a random variable that is uniformly distributed over the interval [0, 1]. (5 points)

Task 2. Is it possible for a two state Markov chain not to have a stationary distribution?

(5 points)

Task 3. Let W(t), $t \ge 0$, be a zero-mean continuous time Gaussian process with autocorrelation function $R_{WW}(s,t) = \min(s,t)$. Find the probability $\Pr\left(\int_0^1 W(t) \, dt > 1\right)$. (5 points)

Task 4. For a continuous time LTI system with WSS input and output X(t) and Y(t), respectively, with PSD's $S_{XX}(f)$ and $S_{YY}(f)$, respectively, and with transfer function H(f) it holds that $S_{YY}(f) = |H(f)|^2 S_{XX}(f)$. Prove this fact. (5 points)

Task 5. A continuous time communication system transmits a square pulse s(t) = 1for $t \in [0,1]$ and s(t) = 0 for $t \notin [0,1]$ on a noisy channel so that the recived signal is R(t) = s(t) + N(t) where N(t) is white noise. The recived signal R(t) is processed through a matched filter with output Y(t) that produces the optimum SNR at time $t = t_0$. Find the impulse response h(t) of the matched filter as well as the value of $Y(t_0)$. (5 points)

Task 6. We have collected four measurements

 $x[0] = 0.3, \quad x[1] = -0.2, \quad x[2] = 0.1 \quad \text{and} \quad x[3] = -0.3,$

of a discrete time WSS random process $\{x[n]\}_{n=-\infty}^{\infty}$ and we wish to find a mathematical model for the measured process. We select to use a simple AR(1)-model $x[n] + a_1 x[n-1] = e[n]$ for $n \in \mathbb{Z}$, where $\{e[n]\}_{n=-\infty}^{\infty}$ is discrete time white noise: Your task is to estimate the parameter a_1 and the white noise variance $\sigma_e^2 = \mathbf{E}\{e[n]^2\}$. (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 27 October 2017

Task 1. $\mu_X(t) = E[X(t)] = E[e^{-Ut}] = \int_0^1 e^{-ut} du = \dots = (1 - e^{-t})/t$ for t > 0 while (by inspection) $\mu_X(0) = 1$ and similarly $R_{XX}(s,t) = E[X(s)X(t)] = E[e^{-Us}e^{-Ut}] = \dots = (1 - e^{-(s+t)})/(s+t)$ for s+t > 0 with $R_{XX}(0,0) = 1$.

Task 2. A stationary distribution π exists if and only if we can solve

$$\begin{cases} [\pi_1 \ \pi_2] = [\pi_1 \ \pi_2] \begin{bmatrix} 1-p \ p \\ q \ 1-q \end{bmatrix} \Leftrightarrow \begin{cases} p\pi_1 = q\pi_2 \\ \pi_1 + \pi_2 = 1 \end{cases} \Leftrightarrow \begin{cases} \pi_1 = q/(p+q) \\ \pi_2 = p/(p+q) \\ \pi_1 + \pi_2 = 1 \end{cases} \text{ if } p+q = 0 \end{cases}$$

As this always have at least one solution a stationary distribution always exists.

Task 3. As the random variable $\int_0^1 W(t) dt$ is Gaussian (being a linear combination of Gaussian process values) with mean $E[\int_0^1 W(t) dt] = \int_0^1 E[W(t)] dt = 0$ and variance $\operatorname{Var}(\int_0^1 W(t) dt) = \operatorname{Cov}(\int_0^1 W(s) ds, \int_0^1 W(t) dt) = \int_0^1 \int_0^1 \operatorname{Cov}(W(s), W(t)) ds dt =$ $\int_0^1 \int_0^1 \min(s, t) ds dt = \ldots = 1/3$ we have $\operatorname{Pr}(\int_0^1 W(t) dt > 1) = \operatorname{Pr}(\operatorname{N}(0, 1/3) > 1) =$ $1 - \Phi(\sqrt{3}).$

Task 4. This is done in Section 11.1 of the book by Miller and Childers.

Task 5. According to Example 11.6 in the book by Miller and Childers we have $h(t) = s(t_0 - t)$ and $Y(t_0) = (h \star R)(t_0) = 1 + \int_0^1 N(u) \, du$.

Task 6. As the autocorrelation function $r_x[k]$ of the AR(1)-process satisfies the Yule-Walker equations

$$a_1 r_x[0] + r_x[1] = 0$$
 and $r_x[0] + a_1 r_x[1] = \sigma_e^2$,

we obtain estimates \hat{a}_1 and $\hat{\sigma}_e^2$ of the parameters a_1 and σ_e^2 by solving the equations

$$\hat{a}_1 \hat{r}_x[0] + \hat{r}_x[1] = 0$$
 and $\hat{r}_x[0] + \hat{a}_1 \hat{r}_x[1] = \hat{\sigma}_e^2$

giving

$$\hat{a}_1 = -\hat{r}_x[1]/\hat{r}_x[0]$$
 and $\hat{\sigma}_e^2 = \hat{r}_x[0] - \hat{r}_x[1]^2/\hat{r}_x[0],$

where

$$\hat{r}_x[0] = \frac{1}{4} \sum_{n=0}^3 x[n]^2 = \dots = 0.0575$$
 and $\hat{r}_x[1] = \frac{1}{4} \sum_{n=0}^2 x[n] x[n+1] = \dots = -0.0275.$