MVE136 Random Signals Analysis

Written exam Monday 20 August 2018 2-6 PM

Teacher: Patrik Albin. Jour: Olof Giselsson 0317725325.
AIDS: Beta or 2 sheets ($=4$ pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Calculate $P[X(2)=2 \mid X(1)=1, X(3)=3]$ for a unit rate/intensity Poisson process. (5 points)

Task 2. Calculate $P[X(1)+X(2) \geq 2]$ for a zero-mean WSS continuous time Gaussian random process $\{X(t)\}_{t \in \mathbb{R}}$ with autocorrelationfunction $R_{X X}(\tau)=\mathrm{e}^{-|\tau|}$. points)

Task 3. A Markov chain $\{X(n)\}_{n=0}^{\infty}$ has two states 0 and 1 and transition matrix

$$
P=\left[\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right]
$$

where $p_{00}, p_{01}, p_{10}, p_{11} \in(0,1)$. Find $P[X(1)=1 \mid X(0)=0, X(2)=0]$.
Task 4. Let $S_{X X}(\omega)$ be the PSD of a WSS random process $X(t)$. Prove that $S_{X X}(\omega)$ is symmetric $S_{X X}(-\omega)=S_{X X}(\omega)$. (5 points)

Task 5. Derive the frequency responce $H(\omega)$ of the mathematical operation of differentiating a continuous time signal $\{x(t)\}_{t \in \mathbb{R}}$ with $\int_{-\infty}^{\infty}|x(t)| d t<\infty$. [In other words $H(\omega)=\int_{-\infty}^{\infty} \mathrm{e}^{-j 2 \pi \omega t} h(t) d t$, where $x^{\prime}(t)=\int_{-\infty}^{\infty} h(t-s) x(s) d s$.] Note that it is a derivation that is asked for - it is not enough to just give a formula for $H(\omega)$. (5 points)

Task 6. Let $s[n]$ be a second order autoregressive (AR) process with parameters σ_{s}^{2}, a_{1} and a_{2} that is independent of a second order moving average (MA) process $w[n]$ with parameters σ_{w}^{2}, b_{1} and b_{2}. Find the best possible Wiener filter that outputs estimates $y[n]$ of $s[n]$ from the input $x[n]=s[n]+w[n]$. (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 20 August 2018

Task 1. $P[X(2)=2 \mid X(1)=1, X(3)=3]=P[X(1)=1, X(2)=2, X(3)=3] / P[X(1)=$ $1, X(3)=3]=P[X(1)=1, X(2)-X(1)=1, X(3)-X(2)=1] / P[X(1)=1, X(3)-X(1)=$ $2]=\left(\mathrm{e}^{-1}\right)^{3} /\left(\mathrm{e}^{-1} \frac{2^{2}}{2!} \mathrm{e}^{-2}\right)=\frac{1}{2}$.

Task 2. We have $P[X(1)+X(2) \geq 2]=P\left[\mathrm{~N}\left(0, \sigma^{2}\right) \geq 2\right]=1-\Phi(2 / \sigma)$, where $\sigma^{2}=$ $\operatorname{Var}[X(1)+X(2)]=2\left(R_{X X}(0)+R_{X X}(1)\right)=2\left(1+\mathrm{e}^{-1}\right)$.

Task 3. $P[X(1)=1 \mid X(0)=0, X(2)=0]=P[X(0)=0, X(1)=1, X(2)=0] / P[X(0)=$ $0, X(2)=0]=P[X(2)=0 \mid X(1)=1, X(0)=0] P[X(1)=1 \mid X(0)=0] / P[X(2)=$ $0 \mid X(0)=0]=p_{10} p_{01} /\left(p_{00} p_{00}+p_{01} p_{10}\right)$.

Task 4. By symmetry of the autocorrelationfunction $R_{X X}(\tau)$ of $X(t)$ we have $S_{X X}(\omega)=$ $\left(\mathcal{F} R_{X X}\right)(\omega)=\left(\mathcal{F} R_{X X}(-\cdot)\right)(\omega)=\left(\mathcal{F} R_{X X}\right)(-\omega)=S_{X X}(-\omega)$.

Task 5. As $\left(\mathcal{F} x^{\prime}\right)(\omega)=(\mathcal{F}(h \star x))(\omega)=H(\omega)(\mathcal{F} x)(\omega)$ and on the other hand $\left(\mathcal{F} x^{\prime}\right)(\omega)=\int_{-\infty}^{\infty} \mathrm{e}^{-j 2 \pi \omega t} x^{\prime}(t) d t=\left[\mathrm{e}^{-j 2 \pi \omega t} x(t)\right]_{t=-\infty}^{t=\infty}+j 2 \pi \omega \int_{-\infty}^{\infty} \mathrm{e}^{-j 2 \pi \omega t} x(t) d t=j 2 \pi \omega$ $\times(\mathcal{F} x)(\omega)$ we have $H(\omega)=j 2 \pi \omega$.

Task 6. According to theory for the Wiener filter we should use the frequency response $H\left(e^{j \omega}\right)=P_{s}\left(e^{j \omega}\right) /\left(P_{s}\left(e^{j \omega}\right)+P_{w}\left(e^{j \omega}\right)\right)$, where $P_{s}\left(e^{j \omega}\right)=\sigma_{s}^{2} /\left|1+a_{1} e^{j \omega}+a_{2} e^{j 2 \omega}\right|^{2}$ and $P_{w}\left(e^{j \omega}\right)=\sigma_{w}^{2}\left|1+b_{1} e^{j \omega}+b_{2} e^{j 2 \omega}\right|^{2}$.

