MVE136 Random Signals Analysis

Written exam Monday 7 January 2019 2-6 pm

Teacher: Patrik Albin. Jour: Johannes Borgqvist, telephone 0317725325.
AIDS: Beta or 2 sheets ($=4$ pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Calculate $P(X(1)+X(2)=X(3))$ for a Poisson process $\{X(t)\}_{t \geq 0}$ with unit rate/intensity. (5 points)

Task 2. An autocorrelation function $R_{X X}(\tau)$ of a WSS process must be positive semidefinite, which is to say that $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} R_{X X}\left(t_{j}-t_{i}\right) \geq 0$ for all $a_{1}, \ldots, a_{n} \in \mathbb{R}$, all times t_{1}, \ldots, t_{n} and all $n \in \mathbb{N}\left[\right.$ as $\left.\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} R_{X X}\left(t_{j}-t_{i}\right)=E\left(\left(\sum_{i=1}^{n} a_{i} X\left(t_{i}\right)\right)^{2}\right)\right]$. Does this mean that $R_{X X}(\tau)$ has to be nonnegative? (5 points)

Task 3. Let $\{X(t)\}_{t \in \mathbb{R}}$ be a zero-mean WSS random process with autocorrelation function $R_{X X}(\tau)=\cos (\tau)$. Find the autocorrelation function $R_{Y Y}(s, t)=E[Y(s) Y(t)]$ of the random process $Y(t)=\int_{0}^{t} X(u) d u$ for $t \geq 0$. (5 points)

Task 4. Consider a Markov chain with possible values 0 and 1 and transition matrix

$$
P=\left[\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right]
$$

where $\alpha, \beta \in[0,1]$ are constants. Under what additional constraints on α and β (other than that they lie in the interval $[0,1]$) does the chain possess a uniquely determined (that is, one and only one) stationary distribution π ?

Task 5. The input to a continuous time LTI system is a WSS continuous time random process $X(t)$ with autocorrelation function

$$
R_{X X}(\tau)=\frac{A \omega_{0}}{\pi} \frac{\sin \left(\omega_{0} \tau\right)}{\omega_{0} \tau} \quad \text { for } \tau \in \mathbb{R},
$$

where $A, \omega_{0}>0$ are constants. Further, the LTI system has impulse response

$$
h(t)=\frac{\omega_{1}}{\pi} \frac{\sin \left(\omega_{1} t\right)}{\omega_{1} t} \quad \text { for } t \in \mathbb{R},
$$

where $\omega_{1}>0$ is a constant. Find the autocorrelation function of the output $Y(t)$ from the system. (5 points)

Task 6. Compute the autocorrelation function $r_{x}[n]$ for $n=0$ and $n=1$ when $x[n]$ is an $\operatorname{AR}(1)$-process with parameter $a_{1}=0.7$. You can assume that the input noise has variance $\sigma_{e}^{2}=1$.
(5 points)

MVE136 Random Signals Analysis

Solutions to written exam 7 January 2019

Task 1. $P(X(1)+X(2)=X(3))=P(X(1)=X(3)-X(2))=P(\xi=\eta)$ for ξ and η independent unit mean Poisson distributed random variables so that the asked for probability is $\sum_{k=0}^{\infty} \mathrm{e}^{-2} /(k!)^{2}$.

Task 2. No because $\cos (\tau)$ is an autocorrelation function.
Task 3. $E[Y(s) Y(t)]=\int_{u=0}^{u=s} \int_{v=0}^{v=t} E[X(u) X(v)] d v d u=\int_{u=0}^{u=s} \int_{v=0}^{v=t} \cos (v-u) d v d u=$ $\ldots=\cos (t-s)+1-\cos (s)-\cos (t)$.

Task 4. By basic algebraic manipulations we see that

$$
\left\{\begin{array} { r }
{ \pi P = \pi } \\
{ \pi _ { 0 } + \pi _ { 1 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \pi _ { 0 } (1 - \alpha) + \pi _ { 1 } \beta = \pi _ { 0 } } \\
{ \pi _ { 0 } \alpha + \pi _ { 1 } (1 - \beta) = \pi _ { 1 } } \\
{ \pi _ { 0 } + \pi _ { 1 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \pi _ { 0 } (1 - \alpha) + \pi _ { 1 } \beta = \pi _ { 0 } } \\
{ \pi _ { 0 } + \pi _ { 1 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
\pi_{0}(\alpha+\beta)=\beta \\
\pi_{0}+\pi_{1}=1
\end{array}\right.\right.\right.\right.
$$

which in turn has a unique solution $\pi=\left(\frac{\beta}{\alpha+\beta} \frac{\alpha}{\alpha+\beta}\right)$ if and only if $\alpha+\beta>0$ (whilst for $\alpha+\beta=0$ any distribution π is a solution).

Task 5. Writing $p_{a}(\omega)=1$ for $|\omega|<a$ and $p_{a}(\omega)=0$ for $|\omega|>a$ we have $S_{X X}(\omega)=$ $A p_{\omega_{0}}(\omega)$ and $H(\omega)=p_{\omega_{1}}(\omega)$ so that $S_{Y Y}(f)=|H(f)|^{2} S_{X X}(f)=A p_{\omega_{0}}(\omega) p_{\omega_{1}}(\omega)=$ $A p_{\min \left\{\omega_{0}, \omega_{1}\right\}}(\omega)$ giving

$$
R_{Y Y}(\tau)=\frac{A \min \left\{\omega_{0}, \omega_{1}\right\}}{\pi} \frac{\sin \left(\min \left\{\omega_{0}, \omega_{1}\right\} \tau\right)}{\min \left\{\omega_{0}, \omega_{1}\right\} \tau} \quad \text { for } \tau \in \mathbb{R}
$$

Task 6. We can use the Yule-Walker equations to find $r_{x}[0]$ and $r_{x}[1]$. Since it is simple, this solution will start with a derivation of Yule-Walker: If we multiply both sides of the equation

$$
x[n]+0.7 x[n-1]=e[n]
$$

with $x[n-k]$ and take expectations we get

$$
\underbrace{E\{x[n-k](x[n]+0.7 x[n-1])\}}_{r_{x}[k]+0.7 r_{x}[k-1]}=\underbrace{E\{x[n-k] e[n]\}}_{\delta[k]} \quad \text { for } k \geq 0
$$

Using this equation for $k=0$ and $k=1$ we get the matrix equation

$$
\left[\begin{array}{cc}
1 & 0.7 \\
0.7 & 1
\end{array}\right]\left[\begin{array}{l}
r_{x}[0] \\
r_{x}[1]
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Solving this matrix equation we get $r_{x}[0]=1 / 0.51 \approx 1.96$ and $r_{x}[1]=-0.7 r_{x}[0] \approx 1.37$.

