
Lecture notes MVE136 Fall 2019. Part 1: Probability

2. Discrete random variables

We carry out a random experiment. The random experiment has various possible out-

comes ξ. The sample space S is the set of all possible outcomes ξ of the random

experiment. An event A is a subset of the sample space A ⊂ S. A probability measure

Pr assigns probabilities Pr(A) to all events A ⊂ S.

Definition 2.1. (Axioms for Probability Measures)

1. Pr(A) ≥ 0 for A ⊂ S,

2. Pr(S) = 1,

3. Pr(A ∪B) = Pr(A) + Pr(B) for A,B ⊂ S with A ∩B = ∅.

Corollary 2.2. 1. Pr(A) = Pr(Ac) = 1− Pr(A) for A ⊂ S,

2. Pr(∅) = 0,

3. Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B) for A,B ⊂ S.

Above A and Ac are two ways to denote the complement set to A, i.e., S \A.

Proof. (1) 1 =[Axiom 2] Pr(S) = Pr(A ∩Ac) =[Axiom 3] Pr(A) + Pr(Ac).

(2) Take A = S so that Ac = ∅ in (1).

(3) Pr(A∪B) = Pr(A∪ (B∩Ac)) =[Axiom 3] Pr(A) + Pr(Ac∩B) = Pr(A) + Pr(B)−

Pr(A ∩B) as Pr(B) = Pr((A ∩B) ∪ (Ac ∩B)) =[Axiom 3] Pr(A ∩B) + Pr(Ac ∩B). �

Sometimes it is convenient to write Pr(A,B) for the probability Pr(A ∩B).

Example 2.1. For toss with two dice we have S = {(i, j) : i, j ∈ {1, . . . , 6}}. For

fair dice Pr({(i, j)}) = 1
36 for every (i, j) so that Pr(A) =

∑
(i,j)∈A Pr({(i, j)}) =

#{(i,j)∈S:(i,j)∈A}
36 for A ⊂ S. For unfair dice any probability measure Pr that

complies with Axioms 1-3 is possible but then the second of the previous equal-

ities is no longer valid. An example of an event is A = {sum of dice ≥ 10} =

{(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} with Pr(A) = 1
6 (for fair dice).

Definition 2.3. The conditional probability Pr(A|B) for A ⊂ S given that B ⊂ S

occures (occured) is defined Pr(A|B) = Pr(A,B)
Pr(B) [provided that Pr(B) > 0].
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Think of a deal at a poker table where you happen to see that one of your competa-

tors at the table obtained ace of spades. Then the conditional probability for four of a

kind of ace in your own poker hand given that event is zero.

Example 2.1. (Continued) If B is the event that first dice is 5 and A is as

before we have Pr(A|B) = Pr(A,B)
Pr(B) = Pr({(5,5),(5,6)})

1/6 = 2/36
1/6 = 2

6 >
1
6 = Pr(A).

Theorem 2.4. (Law of Total Probability) For events A and mutually dis-

joint events B1, . . . , Bn with ∪ni=1Bi = S we have Pr(A) =
∑n

i=1 Pr(A|Bi) Pr(Bi).

The events B1, . . . , Bn are called mutually disjoint when Bi ∩Bj = ∅ for i 6= j.

Proof.
∑n

i=1 Pr(A|Bi) Pr(Bi) =
∑n

i=1
Pr(A,Bi)
Pr(Bi)

Pr(Bi) =
∑n

i=1 Pr(A ∩ Bi) =[Axiom 3]=

Pr(A) since A ∩B1, . . . , A ∩Bn are mutually disjoint with ∪ni=1A ∩Bi = A. �

Corollary 2.5. (Bayes’ Theorem) For events A,B1, . . . , Bn as in the previous

theorem we have Pr(Bj |A) =
Pr(A|Bj) Pr(Bj)∑n
i=1 Pr(A|Bi) Pr(Bi)

.

Proof. The numerator of the right hand side is Pr(A∩Bj) by the definition of conditional

probability while the denominator is Pr(A) by the law of total probability. �

Definition 2.6. Two eventsA andB are independent if Pr(A∩B) = Pr(A) Pr(B).

The events A1, . . . , An are indepedent if Pr(Ai1 ∩ . . .∩Aik) = Pr(Ai1) · . . . ·Pr(Aik)

whenever i1, . . . , ik ∈ {1, . . . , n} are distinct.

Corollary 2.7. For A and B independent we have Pr(A|B) = Pr(A).

Proof. For A and B independent Pr(A|B) = Pr(A,B)
Pr(B) = Pr(A) Pr(B)

Pr(B) = Pr(A). �

Example 2.1. (Continued) A and B are not independent as Pr(A|B) 6= Pr(B).

Definition 2.8. A random variable (r.v.) X(ξ), ξ ∈ S, is a function X : S → R

from a sample space to the real numbers.

So a random variable is a function of the outcome of a random experiment. To

find the value of the random variable one has to carry out the random experiment.

Although X(ξ) is a function of the outcome ξ ∈ S of the experiment the dependence on

ξ is virtually never indicated in the notation so that one writes just X instead of X(ξ).
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Definition 2.9. An r.v. is discrete if its number of different possible values is

finite or countably infinite. Otherwise it is continuous.

Definition 2.10. The probability mass function (PMF) PX for a discrete r.v. is

defined PX(k) = Pr(X = k) for all k.

Above Pr(X = x) is short hand notation for Pr({ξ ∈ S : X(ξ) = x}) - remember

that Pr assigns probabilities to events and {X = x} is short hand notation for the event

{ξ ∈ S : X(ξ) = x} that the outcome ξ of the random experiment is such that X(ξ) = x.

Example 2.1. (Continued) For X the sum of two dice PX(k) = 1
36 ,

2
36 ,

3
36 ,

4
36 ,

5
36 ,

6
36 ,

5
36 ,

4
36 ,

3
36 ,

2
36 and 1

36 for k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, respectively.

Theorem 2.11. (Properties of PMF)

1.
∑

all k PX(k) = 1,

2. Pr(X ∈ A) =
∑

k∈A PX(k) for A ⊂ R.

Proof. Clearly, (1) follows from (2) taking A = {all possible values of X}. Further,

Pr(X ∈ A) = Pr(∪x∈A{X = x}) =[Axiom 3]

∑
x∈A Pr({X = x}) =

∑
x∈A PX(x). �

Out of many namned discrete r.v.’s the following four argubly are most important:

Definition 2.12. A Bernoulli r.v. X has possible values {0, 1} with PMF PX(0)

= 1−p and PX(1) = p for a constant p ∈ [0, 1].

One can interpret a Bernoulli r.v. as the indicator of whether one get heads X = 1

or tails X = 0 in a coin tossing experiment (of a not necessarily fair/balanced coin).

Definition 2.13. A binomial r.v. X has possible values {0, 1, . . . , n} with PMF

PX(k) =
(
n
k

)
pk(1−p)n−k for k = 0, 1, . . . , n for constants p ∈ [0, 1] and n ∈ N.

One can interpret a binomial r.v. as the number of heads k one gets when tossing

a coin n times (=the sum of n Bernoulli r.v.’s) since the probability of each the
(
n
k

)
distinct ordered sequences of k heads and n− k tails has probability pk(1−p)n−k.

Definition 2.14. A Poisson r.v. X has possible values N with PMF PX(k) =

αke−α/(k!) for k ∈ N for a constant α > 0.
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Poisson r.v.’s occur naturally as, e.g., the number of radioactive decays per time

unit of a piece of radioactive matter.

Definition 2.15. A waiting time r.v. X has possible values {1, 2, . . .} with PMF

PX(k) = p (1−p)k−1 for k = 1, 2, . . . for a constant p ∈ [0, 1].

Waiting time r.v.’s can also be called geometric r.v.’s. One can interpret a waiting

time r.v. as the number of tosses k of a coin that are needed to obtain the first heads.

3. Continuous random variables

Definition 3.1. The cummulative distribution function (CDF) FX for an r.v. X

is defined FX(x) = Pr(X ≤ x) for x ∈ R.

Theorem 3.2. (Properties of CDF)

1. FX(x) ∈ [0, 1] with FX(−∞) = 0 and FX(∞) = 1,

2. FX(x) ≤ FX(x) for x ≤ x,

3. Pr(x < X ≤ x) = FX(x)− FX(x).

Proof. By inspection. �

Example 2.1. (Continued) For X the sum of two dice we have FX(x) =

0, 1
36 ,

3
36 ,

6
36 ,

10
36 ,

15
36 ,

21
36 ,

26
36 ,

30
36 ,

33
36 ,

35
36 and 1 for x ∈ (−∞, 2), [2, 3), [3, 4), [4, 5),

[5, 6), [6, 7), [7, 8), [8, 9), [9, 10), [10, 11), [11, 12) and [12,∞), respectively.

Definition 3.3. The probability density function (PDF) fX for a continuous r.v.

X is defined fX(x) = F ′X(x) for x ∈ R.

Theorem 3.4. (Properties of PDF)

1. fX(x) ≥ 0 and
∫∞
−∞ fX(x) dx = 1,

2. FX(x) =
∫ x
−∞ fX(y) dy,

3. Pr(X ∈ A) =
∫
x∈A fX(x) dx for A ⊂ R.

Proof. (1) The integral formula follows from taking A = R in (3).

(2) Follows using that FX(x) is primitive function to fX(x) with FX(−∞) = 0.

(3) All sets A ⊆ R can be built by sets of type (−∞, x] using basic set operations

and therefore (3) can be derived from (2) using the axioms of probability measures. �
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Out of many namned continuous r.v.’s the following three are most important:

Definition 3.5. A uniform r.v. X over the interval [a, b] has possible values [a, b]

with PDF fX(x) = 1/(a−b) for constants −∞ < a < b < +∞.

Above we use the convention that fX(x) = 0 in those regions where its values is not

specified. A uniform r.v. over [a, b] takes values in [a, b] without any preference to have

a more probable value in a certain sub-region of that interval.

A uniform r.v. X over [a, b] has CDF FX(x) = (x− a)/(b−a) for x ∈ [a, b]. Here we

use the convention that FX(x) = 0 or 1 in those regions where its values is not specified.

Definition 3.6. An exponential r.v. X has possible values R+ with PDF fX(x) =

e−x/b/b for x ≥ 0 for a constant b > 0.

Some sources (e.g., Mathematica) use the parametrization fX(x) = b e−bx so that

one must check what parametrization is in use. Exponential r.v.’s occur naturally as

the time between two consecuitve radioactive decays of a piece of radioactive matter.

An exponential r.v. X has CDF FX(x) = 1− e−x/b for x ≥ 0.

Definition 3.7. A Gaussian/Normal/N(m,σ2) r.v. X has possible values R with

PDF fX(x) = 1√
2π σ

e−(x−m)2/(2σ2) for x ∈ R for m ∈ R and σ > 0 constants.

Some sources (e.g., Matlab) use the parametrization N(m,σ) so that one must check

what parametrization is in use. Gaussian random variables occur naturally because of

the so called central limit theorem according to which the macroscopic sum of a very

large number of independent equally distributed microscopic contributions is Gaussian.

Definition 3.8. An N(0, 1) r.v. is called standardized Gaussian and its PDF and

CDF are denoted φ(x) = 1√
2π

e−x
2

and Φ(x) =
∫ x
−∞

1√
2π

e−y
2
dy, respectively.

Theorem 3.9. For a general N(m,σ2) r.v. X we have FX(x) = Φ
(
x−m
σ

)
.

Proof.

FX(x) =

∫ x

−∞

1√
2π σ

e−(x−m)2/(2σ2) dy =[z=(y−m)/σ] =

∫ (x−m)/σ

−∞

1√
2π

e−z
2/2 dz

= Φ
(x−m

σ

)
. �
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Definition 3.10. The conditional CDF FX|A of an r.v. X given that an event

A ⊂ S occures (occured) is defined FX|A(x) = Pr(X≤x,A)
Pr(A) for x ∈ R.

A conditional CDF FX|A has the same properties (1)-(3) as an unconditional CDF.

Definition 3.11. The conditional PMF PX|A of a discrete r.v. X given that an

event A ⊂ S occures (occured) is defined by PX|A(k) = F ′X|A(x) for x ∈ R.

The conditional PDF fX|A of a continuous r.v. X given that an event A ⊂ S

occures (occured) is defined by fX|A(x) = F ′X|A(x) for x ∈ R.

A conditional PMF PX|A has same properties (1)-(2) as an unconditional PMF and

a conditional PDF fX|A = has same properties (1)-(3) as an unconditional PDF.

Of special interest is the conditional CDF and PDF of a continuous r.v. X given

that the event A = {a < X ≤ b} occures (occured) in which case one readily gets

FX|A(x) =
FX(x)− FX(a)

FX(b)− FX(a)
and fX|A(x) =

fX(x)

FX(a)− FX(b)
for a < x ≤ b.

4. Operations on random variables

Definition 4.1. The expected value E(X) = µX of an r.v. X is defined

E(X) =


∑

all k k PX(k) for X discrete,∫∞
−∞ x fX(x) dx for X continuous.

The expected value is the center of gravity for the PMF or PDF.

Example 2.1. (Continued) For X the sum of two dice we have E(X) = 2 · 136 +

3 · 236 +4 · 336 +5 ·436+6 · 536 +7 · 636 +8 · 536 +9 · 436 +10 · 336 +11 · 236 +12 · 136 = . . . = 7.

Theorem 4.2. For a function g : R→ R we have

E(g(X)) =


∑

all k g(k)PX(k) for X discrete,∫∞
−∞ g(x) fX(x) dx for X continuous.

Proof. (Discrete case.)

E(g(X)) =
∑
all k

kPr(g(X) = k) =[k=g(`)]

∑
all `

g(`) Pr(g(X) = g(`)) =
∑
all `

g(`)PX(`). �
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Definition 4.3. The n’th moment of an r.v. X is defined E(Xn) for n ∈ N. The

n’th central moment of an r.v. X is defined E((X − µX)n) for n ∈ N.

Example 4.1. For X uniformly distributed over [a, b] we have

E(X) =
∫∞
−∞ x fX(x) dx =

∫ b
a

x
b−a dx =

[
x2

2 (b−a)
]x=b
x=a

= b2−a2
2 (b−a) = a+b

2 .

Definition 4.4. The conditional expected value E(X|A) of an r.v. X given that

an event A ⊂ S occures (occured) is defined

E(X|A) =


∑

all k k PX|A(k) for X discrete,∫∞
−∞ x fX|A(x) dx for X continuous.

Theorem 4.5. For X a continuous r.v. with PDF fX(x) and g : R→ R strictly

increasing the r.v. Y = g(X) has PDF fY (y) = fX(g−1(y)) d
dy g

−1(y).

Proof. fY (y) = d
dy Pr(g(X) ≤ y) = d

dy Pr(X ≤ g−1(y)) = fX(g−1(y)) d
dy g

−1(y). �

Example 4.1. (Continued) For X uniformly distributed over [0, 1] with

fX(x) = 1 for x ∈ [0, 1] and Y = − ln(X) we cannot apply the previous the-

orem since − ln(x) is not increasing, but by direct calculation we get

fY (y) = d
dy Pr(Y ≤ y) = d

dy Pr(− ln(X) ≤ y) = d
dy Pr(X ≥ e−y)

= d
dy

(
1− Pr(X < e−y)

)
= e−y fX(e−y) = e−y

for y ≥ 0 so that Y is exponentially distributed with parameter 1.

Definition 4.6. The characteristic function (CHF) ΦX of an r.v. X is defined

ΦX(ω) = E(ejωX) for ω ∈ R (where j is the imaginary unit j2 = −1).

Here ΦX(ω) =
∫∞
−∞ ejωxfX(x) dx is the Fourier transform of fX for X continuous.

Example 4.2. For X an N(m,σ2) distributed r.v. we have

ΦX(ω) =

∫ ∞
−∞

ejωx
1√
2π σ

e−(x−m)2/(2σ2) dx

=

∫ ∞
−∞

1√
2π σ

e−(x−m−jωσ
2)2/(2σ2) dx× ejωm−

1
2
ω2σ2

=

∫ ∞
−∞

fN(m+jωσ2,σ2)(x) dx× ejωm−
1
2
ω2σ2

= ejmω−
1
2
σ2ω2

.
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In the above example we used the useful trick to recognize an integral of a PDF (or

the sum of a PMF) to conclude that the integral (sum) is one without calculations.

Theorem 4.7. (−j)nΦ
(n)
X (0) = E(Xn) for n ∈ N.

Proof. Φ
(n)
X (0) = dn

dωnE(ejωX)
∣∣
ω=0

= E( dn

dωn ejωX)
∣∣
ω=0

= E((jX)nejωX)
∣∣
ω=0

= jnE(Xn).�

Example 4.2. (Continued) For X an N(m,σ2) distributed r.v. we have

E(X) = (−j) Φ′X(0) = (−j) (jm− σ2ω) ΦX(ω)
∣∣
ω=0

= m,

E(X2) = (−j)2Φ′′X(0) = j2
(
(jm− σ2ω)2 − σ2

)
ΦX(ω)

∣∣
ω=0

= m2 + σ2.

The moments of the six other namned random variables we have considered so far

can also be calculated by differentiating their CHF at zero.

Definition 4.8. The probability generating function (PGF) HX of an N-valued

r.v. X is defined HX(z) = E(zX) =
∑∞

k=0 z
k PX(k) for z ∈ [0, 1].

Theorem 4.9. H
(n)
X (1) = E

(
X (X−1) · . . . · (X−n+1)

)
and PX(n) = 1

n! H
(n)
X (0)

for n ∈ N.

Proof. dn

dznE(zX)
∣∣
z=1

= E( d
n

dzn z
X)
∣∣
z=1

= E
(
X (X−1)·. . .·(X−n+1) zX

)∣∣
z=1

= E
(
X (X−

1) · . . . · (X − n+ 1)
)

while the formula for PX(n) is Taylor expansion. �

5. Two-dimensional random variables

Definition 5.1. The joint CDF FX,Y for a pair of r.v.’s (X,Y ) is defined

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y) for x, y ∈ R.

Theorem 5.2. (Properties of Joint CDF)

1. FX,Y (x, y)∈ [0, 1], FX,Y (−∞, y)=FX,Y (x,−∞)=0 and FX,Y (∞,∞)=1,

2. FX,Y (x,∞) = FX(x) and FX,Y (∞, y) = FY (y)

3. FX,Y (x, y)≤FX,Y (x, y) for x≤x and FX,Y (x, y)≤FX,Y (x, y) for y≤y,

4. Pr(x<X≤x, y<Y ≤y) = FX,Y (x, y)−FX,Y (x, y)−FX,Y (x, y)+FX,Y (x, y).

Proof. (1)-(3) are by inspection while (4) follows subtracting Pr(X ≤ x, y < Y ≤ y) =

FX,Y (x, y)− FX,Y (x, y) from Pr(X≤x, y<Y ≤y) = FX,Y (x, y)− FX,Y (x, y). �
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The definition of (X,Y ) being discrete and continuous , respectively, is as before.

Definition 5.3. The joint PMF PX,Y for a pair of discrete r.v.’s (X,Y ) is defined

PX,Y (k, `) = Pr(X = k, Y = `) for all k, `.

Theorem 5.4. (Properties of Joint PMF)

1. PX,Y (k, `) ∈ [0, 1] and
∑∑

all k,` PX,Y (k, `) = 1,

2. PX(k) =
∑

all ` PX,Y (k, `) and PY (`) =
∑

all k PX,Y (k, `),

3. Pr((X,Y ) ∈ A) =
∑∑

all (k,`)∈A PX,Y (k, `) for A ⊂ R2.

Proof. By analogy with the proof for one dimensional r.v. �

Definition 5.5. The joint PDF fX,Y for a pair continuous r.v.’s (X,Y ) is defined

fX,Y (x, y) = ∂2

∂x∂yFX,Y (x, y) for x, y ∈ R.

Theorem 5.6. (Properties of Joint PDF)

1. fX,Y (x, y) ≥ 0 and
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1,

2. FX,Y (x, y) =
∫ u=x
u=−∞

∫ v=y
v=−∞ fX,Y (u, v) dudv,

3. fX(x) =
∫∞
−∞ fX,Y (x, y) dy and fY (y) =

∫∞
−∞ fX,Y (x, y) dx,

4. Pr((X,Y ) ∈ A) =
∫∫
{(x,y)∈R2 : (x,y)∈A} fX,Y (x, y) dxdy for A ⊂ R2.

Proof. (2) Follows as FX,Y is primitive to fX,Y with FX,Y (−∞, y) = FX,Y (x,−∞) = 0.

(3) Follows by differentiation of (2).

(4) All A ⊆ R2 can be built by sets of type (−∞, x] × (−∞, y] using basic set

operations and thus (4) can be derived from (2) using the axioms of probability measures.

(1) Follows since fX,Y (x, y) ≥ 0 by (4) and taking A = R2 in (4), respectively. �

Example 5.1. For fX,Y (x, y) = 1
2 e−x−y/2 for x, y ≥ 0 we have

Pr(X>Y ) =

∫∫
{(x,y)∈R2 :x>y}

fX,Y (x, y) dxdy =

∫ ∞
0

(∫ ∞
y

e−x dx

)
1
2 e−y/2 dy =

1

3
.

Example 5.2. For fX,Y (x, y) = 1√
3π

e−
2
3
(x2−xy+y2) for x, y ∈ R we have

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ ∞
−∞

1√
2π
√

3/4
e(y−

1
2
x)2/(2 (3/4)) dx 1√

2π
e−x

2/2 = φ(x),

since the integrand of the second integral is fN(x/2,3/4)(y) so the integral is 1.
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Theorem 5.7. For a function g : R2 → R we have

E(g(X,Y )) =


∑∑

all k,` g(k, `)PX,Y (k, `) for (X,Y ) discrete,∫∞
−∞

∫∞
−∞ g(x, y) fX,Y (x, y) dxdy for (X,Y ) continuous.

Proof. By analogy with the proof for one dimensional r.v. �

Theorem 5.8. (Linearity) For r.v.’s X1, . . . , Xn and a1, . . . , an ∈ R we have

E
(∑n

i=1 aiXi

)
=
∑n

i=1 aiE(Xi).

Proof. By property (3) of joint PDF we have

E
(∑n

i=1 aiXi

)
=
∫∞
−∞ . . .

∫∞
−∞
(∑n

i=1 aixi
)
fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn

=
∑n

i=1 ai
∫∞
−∞ . . .

∫∞
−∞ xifX1,...,Xn(x1, . . . , xn) dx1 . . . dxn

=
∑n

i=1 ai
∫∞
−∞ xifXi(xi) dxi =

∑n
i=1 aiE(Xi). �

Definition 5.9. The variance Var(X) = σ2X an r.v. X is defined Var(X) =

E((X − µX)2). The standarddeviation of X is σX =
√

Var(X) .

Definition 5.10. The correlation RX,Y between two r.v.’s X and Y is de-

fined RX,Y = E(XY ). The covariance Cov(Y, Y ) between X and Y is defined

Cov(Y, Y ) = E((X − µX)(y − µY )).

Clearly Var(X) = Cov(X,X) and from linearity of the mean we see that Cov(X,Y ) =

RX,Y − µXµY . More generally we obtain the following result in the same fashion:

Theorem 5.11. 1. R∑m
i=1 aiXi,

∑n
j=1 bjYj

=
∑m

i=1

∑n
j=1 aibj RXi,Yj ,

2. Cov
(∑m

i=1 aiXi,
∑n

j=1 bjYj
)

=
∑m

i=1

∑n
j=1 aibj Cov(Xi, Yj),

3. Var
(∑m

i=1 aiXi

)
=
∑m

i=1

∑m
j=1 aiaj Cov(Xi, Xj).

Definition 5.12. The correlation coefficient ρX,Y between X and Y is defined

ρX,Y = Cox(X,Y )/
√

Var(X) Var(Y ) .

Theorem 5.13. |ρX<Y | ≤ 1.

Proof. 0 ≤ Var
(
(X/σX)± (Y/σY )

)
= 2± 2 ρX,Y . �

Definition 5.14. Two r.v.’s X and Y are independent if Pr(X ∈ A, Y ∈ B) =

Pr(X ∈ A) Pr(Y ∈ B) for A,B ⊂ R.
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Theorem 5.15. Two r.v.’s X and Y are independent if and only if FX,Y (x, y) =

FX(x)FY (y) if and only if PX,Y (k, `) = PX(k)PY (`) for (X,Y ) discrete or

fX,Y (x, y) = fX(x)fY (y) for (X,Y ) continuous.

Proof. By inspection. �

Definition 5.16. Two r.v.’s X and Y are uncorrelated if Cov(X,Y ) = 0.

Theorem 5.17. Two independent r.v.’s X and Y are uncorrelated.

Proof. (Continuous case.) As fX,Y (x, y) = fX(x)fY (y) for X and Y independent

E(XY ) =
∫∞
−∞

∫∞
−∞ xy fX,Y (x, y) dxdy =

(∫∞
−∞ x fX(x) dx

) (∫∞
−∞ y fY (y) dy

)
= µXµY . �

Definition 5.18. A jointly Gaussian/Normal r.v. (X,Y ) has PDF

fX,Y (x, y) =
1

2πσXσY
√

1− ρ2X,Y
exp

{
−
(x−µX

σX

)2 − 2ρX,Y
(x−µX

σX

)(y−µY
σY

)
+
(y−µY

σY

)2
2 (1− ρ2X,Y )

}

for (x, y) ∈ R2.

In the above definition it is readily shown by direct calculation that µX , µY , σ2X , σ
2
Y

and ρX,Y are the expectations, variances and correlation coefficient for X and Y .

Example 5.2. (Continued) The PDF fX,Y (x, y) = 1√
3π

e−
2
3
(x2−xy+y2) is bivari-

ate Gaussian with µX = µY = 0, σ2X = σ2Y = 1 and ρX,Y = 1
2 .

Definition 5.19. For a discrete pair of r.v.’s (X,Y ) he conditional PMF of X

given that Y = y is defined PX|Y (x|y) = Pr(X = x|Y = y) =
PX,Y (x,y)
PY (y) .

For a continuous pair of r.v.’s (X,Y ) the conditional PDF of X given that

Y = y is defined fX|Y (x|y) =
fX,Y (x,y)
fY (y) .

Definition 5.20.

Pr(X ∈ A|Y = y) =


∑

all x∈A PX|Y (x|y) for (X,Y ) discrete,∫
x∈A fX|Y (x|y) dx for (X,Y ) continuous.

Definition 5.21.

E(X|Y = y) =


∑

all x xPX|Y (x|y) for (X,Y ) discrete,∫∞
−∞ x fX|Y (x|y) dx for (X,Y ) continuous.

11



Theorem 5.22. (Law of Total Probability)

Pr(X ∈ A) =


∑

all y Pr(X ∈ A|Y = y)PY (y) for (X,Y ) discrete,∫∞
−∞ Pr(X ∈ A|Y = y) fY (y) dy for (X,Y ) continuous.

Proof. (Discrete case.)
∑

all y Pr(X ∈ A|Y = y)PY (y) =
∑∑

all x∈A, all y PX,Y (x, y). �

In an entirely similar fashion one proves the following result:

Theorem 5.23. (Law of Total Expectation)

E(X) =


∑

all xE(X|Y = y)PY (y) for (X,Y ) discrete,∫∞
−∞E(X|Y = y) fY (y) dy for (X,Y ) continuous.

Definition 5.24. The joint moment of an r.v. (X,Y ) is defined E(XmY n) and

the joint central moment E
(
(X − µX)m(Y − µY )n

)
for m,n ∈ N.

Definition 5.25. The joint CHF ΦX,Y for a pair of r.v. (X,Y ) is defined

ΦX,Y (ω1, ω2) = E(ej(ω1X+ω2Y )) for ω1, ω2 ∈ R.

Definition 5.26. The joint PGF HX,Y of an N2-valued r.v. (X,Y ) is defined

HX,Y (z1, z2) = E(zX1 z
Y
2 ) =

∑∞
k=0

∑∞
`=0 z

k
1z

`
2PX,Y (k, `) for z1, z2 ∈ [0, 1].

By analogy with the one dimensional case we obtain the following two results:

Theorem 5.27. (−j)m+nΦ
(m,n)
X,Y (0, 0) = E(XmY n) for m,n ∈ N.

Theorem 5.28. H
(m,n)
X,Y (1, 1) = E

(
X (X − 1) · . . . · (X −m + 1)Y (Y − 1) · . . . ·

(Y − n+ 1)
)

and PX,Y (m,n) = 1
m!n! H

(m,n)
X,Y (0, 0) for m,n ∈ N.

Theorem 5.29. If X and Y are independent r.v.’s thenPX+Y (m) =
∑

all k PX(k)PY (m−k) =
∑

all ` PX(m−`)PY (`) for X and Y discrete,

fX+Y (z) =
∫∞
−∞ fX(x)fY (z−x) dx =

∫∞
−∞ fX(z−y)fY (y) dy for X and Y continuous.

Proof. (Continuous case.)

fX+Y (z) =
d

dz
Pr(X+Y ≤ z) =

d

dz

∫∫
{(x,y)∈R2 :x+y≤z}

fX,Y (x, y) dxdy

=
d

dz

∫ ∞
−∞
fX(x)

(∫ z−x

−∞
fY (y) dy

)
dx =

∫ ∞
−∞
fX(x)fY (z−x) dx.
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The proof can alternatively be done using CHF techniques as in the next example. �

Example 4.2. (Continued) For X and Y independent N(m1, σ
2
1) and N(m2, σ

2
2)

distributed, respectively, we have

ΦX+Y (ω) = E(ejω(X+Y )) = E(ejωXejωY ) = E(ejωX)E(ejωY ) = ej(m1+m2)ω− 1
2
(σ2

1+σ
2
2)ω

2
,

since ejωX and ejωY are uncorrelated. Hence X + Y is N(m1+m2, σ
2
1+σ2).

Theorem 5.30. For a continuous r.v. (X,Y ) with joint PDF fX,Y and functions

g1, g2 : R→ R the r.v. (Z,W ) = (g1(X), g2(Y )) is continuous with

fZ,W (z, w) = fX,Y (x, y)

/∣∣∣∣∣∣∣∣ ∂z/∂x ∂z/∂y

∂w/∂x ∂w/∂y

∣∣∣∣∣∣∣∣
∣∣∣∣∣
(x,y)=(h1(z,w),h2(z,w))

,

where (h1, h2) : R2 → R2 is the inverse transformation to (g1, g2) : R2 → R2.

Proof. By change of variable in two dimensional integral we have

Pr((Z,W ) ∈ A) = Pr
(
(g1(X,Y ), g2(X,Y )) ∈ A

)
=

∫∫
{(x,y)∈R2 : (g1(x,y),g2(x,y))∈A}

fX,Y (x, y) dxdy =
[ x = h1(z, w)

y = h2(z, w)

]

=

∫∫
{(x,y)∈R2 : (z,w)∈A}

fX,Y (h1(z, w), h2(z, w))

/∣∣∣∣∣∣∣∣ ∂z/∂x ∂z/∂y

∂w/∂x ∂w/∂y

∣∣∣∣∣∣∣∣
∣∣∣∣∣x=h1(z,w)

y=h2(z,w)

dzdw.

�
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