Lecture notes MVE136 Fall 2019. Part 1: Probability

2. Discrete random variables

We carry out a random experiment. The random experiment has various possible outcomes ξ . The sample space S is the set of all possible outcomes ξ of the random experiment. An event A is a subset of the sample space $A \subset S$. A probability measure Pr assigns probabilities Pr(A) to all events $A \subset S$.

Definition 2.1. (AXIOMS FOR PROBABILITY MEASURES)

Pr(A) ≥ 0 for A ⊂ S,
 Pr(S) = 1,
 Pr(A ∪ B) = Pr(A) + Pr(B) for A, B ⊂ S with A ∩ B = Ø.

Corollary 2.2. 1. $\Pr(\overline{A}) = \Pr(A^c) = 1 - \Pr(A)$ for $A \subset S$, 2. $\Pr(\emptyset) = 0$, 3. $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$ for $A, B \subset S$.

Above \overline{A} and A^c are two ways to denote the complement set to A, i.e., $S \setminus A$.

- *Proof.* (1) $1 =_{[Axiom 2]} \Pr(S) = \Pr(A \cap A^c) =_{[Axiom 3]} \Pr(A) + \Pr(A^c).$
 - (2) Take A = S so that $A^c = \emptyset$ in (1).

 $(3) \operatorname{Pr}(A \cup B) = \operatorname{Pr}(A \cup (B \cap A^c)) =_{[\operatorname{Axiom} 3]} \operatorname{Pr}(A) + \operatorname{Pr}(A^c \cap B) = \operatorname{Pr}(A) + \operatorname{Pr}(B) - \operatorname{Pr}(A \cap B) \text{ as } \operatorname{Pr}(B) = \operatorname{Pr}((A \cap B) \cup (A^c \cap B)) =_{[\operatorname{Axiom} 3]} \operatorname{Pr}(A \cap B) + \operatorname{Pr}(A^c \cap B). \quad \Box$

Sometimes it is convenient to write Pr(A, B) for the probability $Pr(A \cap B)$.

Example 2.1. For toss with two dice we have $S = \{(i, j) : i, j \in \{1, ..., 6\}\}$. For fair dice $\Pr(\{(i, j)\}) = \frac{1}{36}$ for every (i, j) so that $\Pr(A) = \sum_{(i, j) \in A} \Pr(\{(i, j)\}) = \frac{\#\{(i, j) \in S: (i, j) \in A\}}{36}$ for $A \subset S$. For unfair dice any probability measure \Pr that complies with Axioms 1-3 is possible but then the second of the previous equalities is no longer valid. An example of an event is $A = \{\text{sum of dice} \ge 10\} = \{(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)\}$ with $\Pr(A) = \frac{1}{6}$ (for fair dice).

Definition 2.3. The conditional probability Pr(A|B) for $A \subset S$ given that $B \subset S$ occures (occured) is defined $Pr(A|B) = \frac{Pr(A,B)}{Pr(B)}$ [provided that Pr(B) > 0].

Think of a deal at a poker table where you happen to see that one of your competators at the table obtained ace of spades. Then the conditional probability for four of a kind of ace in your own poker hand given that event is zero.

Example 2.1. (CONTINUED) If *B* is the event that first dice is 5 and *A* is as before we have $\Pr(A|B) = \frac{\Pr(A,B)}{\Pr(B)} = \frac{\Pr(\{(5,5),(5,6)\})}{1/6} = \frac{2/36}{1/6} = \frac{2}{6} > \frac{1}{6} = \Pr(A).$

Theorem 2.4. (LAW OF TOTAL PROBABILITY) For events A and mutually disjoint events B_1, \ldots, B_n with $\bigcup_{i=1}^n B_i = S$ we have $\Pr(A) = \sum_{i=1}^n \Pr(A|B_i) \Pr(B_i)$.

The events B_1, \ldots, B_n are called mutually disjoint when $B_i \cap B_j = \emptyset$ for $i \neq j$.

Proof. $\sum_{i=1}^{n} \Pr(A|B_i) \Pr(B_i) = \sum_{i=1}^{n} \frac{\Pr(A,B_i)}{\Pr(B_i)} \Pr(B_i) = \sum_{i=1}^{n} \Pr(A \cap B_i) =_{[\text{Axiom 3}]} = \Pr(A)$ since $A \cap B_1, \dots, A \cap B_n$ are mutually disjoint with $\bigcup_{i=1}^{n} A \cap B_i = A$.

Corollary 2.5. (BAYES' THEOREM) For events A, B_1, \ldots, B_n as in the previous theorem we have $\Pr(B_j|A) = \frac{\Pr(A|B_j)\Pr(B_j)}{\sum_{i=1}^n \Pr(A|B_i)\Pr(B_i)}$.

Proof. The numerator of the right hand side is $Pr(A \cap B_j)$ by the definition of conditional probability while the denominator is Pr(A) by the law of total probability.

Definition 2.6. Two events A and B are independent if $Pr(A \cap B) = Pr(A) Pr(B)$. The events A_1, \ldots, A_n are independent if $Pr(A_{i_1} \cap \ldots \cap A_{i_k}) = Pr(A_{i_1}) \cdots Pr(A_{i_k})$ whenever $i_1, \ldots, i_k \in \{1, \ldots, n\}$ are distinct.

Corollary 2.7. For A and B independent we have Pr(A|B) = Pr(A).

Proof. For A and B independent $\Pr(A|B) = \frac{\Pr(A,B)}{\Pr(B)} = \frac{\Pr(A)\Pr(B)}{\Pr(B)} = \Pr(A)$.

Example 2.1. (CONTINUED) A and B are not independent as $Pr(A|B) \neq Pr(B)$.

Definition 2.8. A random variable (r.v.) $X(\xi), \xi \in S$, is a function $X : S \to \mathbb{R}$ from a sample space to the real numbers.

So a random variable is a function of the outcome of a random experiment. To find the value of the random variable one has to carry out the random experiment. Although $X(\xi)$ is a function of the outcome $\xi \in S$ of the experiment the dependence on ξ is virtually never indicated in the notation so that one writes just X instead of $X(\xi)$. **Definition 2.9.** An r.v. is *discrete* if its number of different possible values is finite or countably infinite. Otherwise it is *continuous*.

Definition 2.10. The probability mass function (PMF) P_X for a discrete r.v. is defined $P_X(k) = \Pr(X = k)$ for all k.

Above Pr(X = x) is short hand notation for $Pr(\{\xi \in S : X(\xi) = x\})$ - remember that Pr assigns probabilities to events and $\{X = x\}$ is short hand notation for the event $\{\xi \in S : X(\xi) = x\}$ that the outcome ξ of the random experiment is such that $X(\xi) = x$.

Example 2.1. (CONTINUED) For X the sum of two dice $P_X(k) = \frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{5}{36}, \frac{5}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}$ and $\frac{1}{36}$ for k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, respectively.

Theorem 2.11. (PROPERTIES OF PMF)

- 1. $\sum_{\text{all } k} P_X(k) = 1$,
- 2. $\Pr(X \in A) = \sum_{k \in A} P_X(k)$ for $A \subset \mathbb{R}$.

Proof. Clearly, (1) follows from (2) taking $A = \{ \text{all possible values of } X \}$. Further, $\Pr(X \in A) = \Pr(\bigcup_{x \in A} \{X = x\}) = \sum_{x \in A} \Pr(\{X = x\}) = \sum_{x \in A} P_X(x)$. \Box

Out of many namned discrete r.v.'s the following four argubly are most important:

Definition 2.12. A Bernoulli r.v. X has possible values $\{0, 1\}$ with PMF $P_X(0) = 1-p$ and $P_X(1) = p$ for a constant $p \in [0, 1]$.

One can interpret a Bernoulli r.v. as the indicator of whether one get heads X = 1 or tails X = 0 in a coin tossing experiment (of a not necessarily fair/balanced coin).

Definition 2.13. A binomial r.v. X has possible values $\{0, 1, ..., n\}$ with PMF $P_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ for k = 0, 1, ..., n for constants $p \in [0, 1]$ and $n \in \mathbb{N}$.

One can interpret a binomial r.v. as the number of heads k one gets when tossing a coin n times (=the sum of n Bernoulli r.v.'s) since the probability of each the $\binom{n}{k}$ distinct ordered sequences of k heads and n - k tails has probability $p^k(1-p)^{n-k}$.

Definition 2.14. A Poisson r.v. X has possible values \mathbb{N} with PMF $P_X(k) = \alpha^k e^{-\alpha}/(k!)$ for $k \in \mathbb{N}$ for a constant $\alpha > 0$.

Poisson r.v.'s occur naturally as, e.g., the number of radioactive decays per time unit of a piece of radioactive matter.

Definition 2.15. A waiting time r.v. X has possible values $\{1, 2, ...\}$ with PMF $P_X(k) = p (1-p)^{k-1}$ for k = 1, 2, ... for a constant $p \in [0, 1]$.

Waiting time r.v.'s can also be called *geometric r.v.*'s. One can interpret a waiting time r.v. as the number of tosses k of a coin that are needed to obtain the first heads.

3. Continuous random variables

Definition 3.1. The cummulative distribution function (CDF) F_X for an r.v. X is defined $F_X(x) = \Pr(X \le x)$ for $x \in \mathbb{R}$.

Theorem 3.2. (PROPERTIES OF CDF)

- 1. $F_X(x) \in [0,1]$ with $F_X(-\infty) = 0$ and $F_X(\infty) = 1$,
- 2. $F_X(\underline{x}) \leq F_X(\overline{x})$ for $\underline{x} \leq \overline{x}$,
- 3. $\Pr(\underline{x} < X \le \overline{x}) = F_X(\overline{x}) F_X(\underline{x}).$

Proof. By inspection.

Example 2.1. (CONTINUED) For X the sum of two dice we have $F_X(x) = 0, \frac{1}{36}, \frac{3}{36}, \frac{6}{36}, \frac{10}{36}, \frac{15}{36}, \frac{21}{36}, \frac{26}{36}, \frac{30}{36}, \frac{33}{36}, \frac{35}{36}$ and 1 for $x \in (-\infty, 2), [2, 3), [3, 4), [4, 5), [5, 6), [6, 7), [7, 8), [8, 9), [9, 10), [10, 11), [11, 12)$ and $[12, \infty)$, respectively.

Definition 3.3. The probability density function (PDF) f_X for a continuous r.v. X is defined $f_X(x) = F'_X(x)$ for $x \in \mathbb{R}$.

Theorem 3.4. (PROPERTIES OF PDF)

- 1. $f_X(x) \ge 0$ and $\int_{-\infty}^{\infty} f_X(x) dx = 1$,
- 2. $F_X(x) = \int_{-\infty}^x f_X(y) \, dy$,
- 3. $\Pr(X \in A) = \int_{x \in A} f_X(x) \, dx$ for $A \subset \mathbb{R}$.

Proof. (1) The integral formula follows from taking $A = \mathbb{R}$ in (3).

(2) Follows using that $F_X(x)$ is primitive function to $f_X(x)$ with $F_X(-\infty) = 0$.

(3) All sets $A \subseteq \mathbb{R}$ can be built by sets of type $(-\infty, x]$ using basic set operations and therefore (3) can be derived from (2) using the axioms of probability measures. \Box

Out of many namned continuous r.v.'s the following three are most important:

Definition 3.5. A uniform r.v. X over the interval [a, b] has possible values [a, b] with PDF $f_X(x) = 1/(a-b)$ for constants $-\infty < a < b < +\infty$.

Above we use the convention that $f_X(x) = 0$ in those regions where its values is not specified. A uniform r.v. over [a, b] takes values in [a, b] without any preference to have a more probable value in a certain sub-region of that interval.

A uniform r.v. X over [a, b] has CDF $F_X(x) = (x-a)/(b-a)$ for $x \in [a, b]$. Here we use the convention that $F_X(x) = 0$ or 1 in those regions where its values is not specified.

Definition 3.6. An exponential r.v. X has possible values \mathbb{R}^+ with PDF $f_X(x) = e^{-x/b}/b$ for $x \ge 0$ for a constant b > 0.

Some sources (e.g., Mathematica) use the parametrization $f_X(x) = b e^{-bx}$ so that one must check what parametrization is in use. Exponential r.v.'s occur naturally as the time between two consecutive radioactive decays of a piece of radioactive matter.

An exponential r.v. X has CDF $F_X(x) = 1 - e^{-x/b}$ for $x \ge 0$.

Definition 3.7. A Gaussian/Normal/N (m, σ^2) r.v. X has possible values \mathbb{R} with PDF $f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-m)^2/(2\sigma^2)}$ for $x \in \mathbb{R}$ for $m \in \mathbb{R}$ and $\sigma > 0$ constants.

Some sources (e.g., Matlab) use the parametrization $N(m, \sigma)$ so that one must check what parametrization is in use. Gaussian random variables occur naturally because of the so called central limit theorem according to which the macroscopic sum of a very large number of independent equally distributed microscopic contributions is Gaussian.

Definition 3.8. An N(0, 1) r.v. is called standardized Gaussian and its PDF and CDF are denoted $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2}$ and $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2} dy$, respectively.

Theorem 3.9. For a general $N(m, \sigma^2)$ r.v. X we have $F_X(x) = \Phi\left(\frac{x-m}{\sigma}\right)$.

Proof.

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-m)^2/(2\sigma^2)} dy =_{[z=(y-m)/\sigma]} = \int_{-\infty}^{(x-m)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$
$$= \Phi\left(\frac{x-m}{\sigma}\right).$$

Definition 3.10. The conditional CDF $F_{X|A}$ of an r.v. X given that an event $A \subset S$ occures (occured) is defined $F_{X|A}(x) = \frac{\Pr(X \leq x, A)}{\Pr(A)}$ for $x \in \mathbb{R}$.

A conditional CDF $F_{X|A}$ has the same properties (1)-(3) as an unconditional CDF.

Definition 3.11. The conditional PMF $P_{X|A}$ of a discrete r.v. X given that an event $A \subset S$ occures (occured) is defined by $P_{X|A}(k) = F'_{X|A}(x)$ for $x \in \mathbb{R}$.

The conditional PDF $f_{X|A}$ of a continuous r.v. X given that an event $A \subset S$ occures (occured) is defined by $f_{X|A}(x) = F'_{X|A}(x)$ for $x \in \mathbb{R}$.

A conditional PMF $P_{X|A}$ has same properties (1)-(2) as an unconditional PMF and a conditional PDF $f_{X|A}$ = has same properties (1)-(3) as an unconditional PDF.

Of special interest is the conditional CDF and PDF of a continuous r.v. X given that the event $A = \{a < X \le b\}$ occures (occured) in which case one readily gets

$$F_{X|A}(x) = \frac{F_X(x) - F_X(a)}{F_X(b) - F_X(a)} \quad \text{and} \quad f_{X|A}(x) = \frac{f_X(x)}{F_X(a) - F_X(b)} \quad \text{for } a < x \le b.$$

4. Operations on random variables

Definition 4.1. The expected value $E(X) = \mu_X$ of an r.v. X is defined

$$E(X) = \begin{cases} \sum_{\text{all } k} k P_X(k) & \text{for } X \text{ discrete,} \\ \int_{-\infty}^{\infty} x f_X(x) dx & \text{for } X \text{ continuous.} \end{cases}$$

The expected value is the center of gravity for the PMF or PDF.

Example 2.1. (CONTINUED) For X the sum of two dice we have $E(X) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot 436 + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} = \dots = 7.$

Theorem 4.2. For a function $g : \mathbb{R} \to \mathbb{R}$ we have

$$E(g(X)) = \begin{cases} \sum_{\text{all } k} g(k) P_X(k) & \text{for } X \text{ discrete,} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{for } X \text{ continuous.} \end{cases}$$

Proof. (Discrete case.)

$$E(g(X)) = \sum_{\text{all } k} k \Pr(g(X) = k) =_{[k=g(\ell)]} \sum_{\text{all } \ell} g(\ell) \Pr(g(X) = g(\ell)) = \sum_{\text{all } \ell} g(\ell) P_X(\ell). \quad \Box$$

Definition 4.3. The *n*'th moment of an r.v. X is defined $E(X^n)$ for $n \in \mathbb{N}$. The *n*'th central moment of an r.v. X is defined $E((X - \mu_X)^n)$ for $n \in \mathbb{N}$.

Example 4.1. For X uniformly distributed over [a, b] we have

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{x}{b-a} dx = \left[\frac{x^2}{2(b-a)}\right]_{x=a}^{x=b} = \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}.$$

Definition 4.4. The conditional expected value E(X|A) of an r.v. X given that an event $A \subset S$ occures (occured) is defined

$$E(X|A) = \begin{cases} \sum_{\text{all } k} k P_{X|A}(k) & \text{for } X \text{ discrete,} \\ \int_{-\infty}^{\infty} x f_{X|A}(x) dx & \text{for } X \text{ continuous} \end{cases}$$

Theorem 4.5. For X a continuous r.v. with PDF $f_X(x)$ and $g : \mathbb{R} \to \mathbb{R}$ strictly increasing the r.v. Y = g(X) has PDF $f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$.

Proof.
$$f_Y(y) = \frac{d}{dy} \Pr(g(X) \le y) = \frac{d}{dy} \Pr(X \le g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y).$$

Example 4.1. (CONTINUED) For X uniformly distributed over [0,1] with $f_X(x) = 1$ for $x \in [0,1]$ and $Y = -\ln(X)$ we cannot apply the previous theorem since $-\ln(x)$ is not increasing, but by direct calculation we get

$$f_Y(y) = \frac{d}{dy} \Pr(Y \le y) = \frac{d}{dy} \Pr(-\ln(X) \le y) = \frac{d}{dy} \Pr(X \ge e^{-y})$$
$$= \frac{d}{dy} (1 - \Pr(X < e^{-y})) = e^{-y} f_X(e^{-y}) = e^{-y}$$

for $y \ge 0$ so that Y is exponentially distributed with parameter 1.

Definition 4.6. The characteristic function (CHF) Φ_X of an r.v. X is defined $\Phi_X(\omega) = E(e^{j\omega X})$ for $\omega \in \mathbb{R}$ (where j is the imaginary unit $j^2 = -1$).

Here $\Phi_X(\omega) = \int_{-\infty}^{\infty} e^{j\omega x} f_X(x) dx$ is the Fourier transform of f_X for X continuous.

Example 4.2. For X an $N(m, \sigma^2)$ distributed r.v. we have

$$\Phi_X(\omega) = \int_{-\infty}^{\infty} e^{j\omega x} \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-m)^2/(2\sigma^2)} dx$$

=
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-m-j\omega\sigma^2)^2/(2\sigma^2)} dx \times e^{j\omega m - \frac{1}{2}\omega^2\sigma^2}$$

=
$$\int_{-\infty}^{\infty} f_{\mathcal{N}(m+j\omega\sigma^2,\sigma^2)}(x) dx \times e^{j\omega m - \frac{1}{2}\omega^2\sigma^2} = e^{jm\omega - \frac{1}{2}\sigma^2\omega^2}.$$

In the above example we used the useful trick to recognize an integral of a PDF (or the sum of a PMF) to conclude that the integral (sum) is one without calculations.

Theorem 4.7. $(-j)^n \Phi_X^{(n)}(0) = E(X^n)$ for $n \in \mathbb{N}$.

$$Proof. \ \Phi_X^{(n)}(0) = \frac{d^n}{d\omega^n} E(e^{j\omega X}) \big|_{\omega=0} = E(\frac{d^n}{d\omega^n} e^{j\omega X}) \big|_{\omega=0} = E((jX)^n e^{j\omega X}) \big|_{\omega=0} = j^n E(X^n). \square$$

Example 4.2. (CONTINUED) For X an $N(m, \sigma^2)$ distributed r.v. we have

$$E(X) = (-j) \Phi'_X(0) = (-j) (jm - \sigma^2 \omega) \Phi_X(\omega) \Big|_{\omega=0} = m,$$

$$E(X^2) = (-j)^2 \Phi''_X(0) = j^2 ((jm - \sigma^2 \omega)^2 - \sigma^2) \Phi_X(\omega) \Big|_{\omega=0} = m^2 + \sigma^2.$$

The moments of the six other namned random variables we have considered so far can also be calculated by differentiating their CHF at zero.

Definition 4.8. The probability generating function (PGF) H_X of an N-valued r.v. X is defined $H_X(z) = E(z^X) = \sum_{k=0}^{\infty} z^k P_X(k)$ for $z \in [0, 1]$.

Theorem 4.9. $H_X^{(n)}(1) = E(X(X-1)\cdots(X-n+1))$ and $P_X(n) = \frac{1}{n!}H_X^{(n)}(0)$ for $n \in \mathbb{N}$.

Proof. $\frac{d^n}{dz^n} E(z^X) \Big|_{z=1} = E(\frac{d^n}{dz^n} z^X) \Big|_{z=1} = E(X(X-1) \cdots (X-n+1) z^X) \Big|_{z=1} = E(X(X-1) \cdots (X-n+1))$ while the formula for $P_X(n)$ is Taylor expansion.

5. Two-dimensional random variables

Definition 5.1. The joint CDF $F_{X,Y}$ for a pair of r.v.'s (X,Y) is defined $F_{X,Y}(x,y) = \Pr(X \leq x, Y \leq y)$ for $x, y \in \mathbb{R}$.

Theorem 5.2. (PROPERTIES OF JOINT CDF)

- 1. $F_{X,Y}(x,y) \in [0,1], F_{X,Y}(-\infty,y) = F_{X,Y}(x,-\infty) = 0$ and $F_{X,Y}(\infty,\infty) = 1$,
- 2. $F_{X,Y}(x,\infty) = F_X(x)$ and $F_{X,Y}(\infty,y) = F_Y(y)$
- 3. $F_{X,Y}(\underline{x}, y) \leq F_{X,Y}(\overline{x}, y)$ for $\underline{x} \leq \overline{x}$ and $F_{X,Y}(x, \underline{y}) \leq F_{X,Y}(x, \overline{y})$ for $\underline{y} \leq \overline{y}$,
- $4. \ \Pr(\underline{x} < X \leq \overline{x}, \ \underline{y} < Y \leq \overline{y}) = F_{X,Y}(\overline{x}, \overline{y}) F_{X,Y}(\overline{x}, \underline{y}) F_{X,Y}(\underline{x}, \overline{y}) + F_{X,Y}(\underline{x}, \underline{y}).$

Proof. (1)-(3) are by inspection while (4) follows subtracting $\Pr(X \leq \underline{x}, \underline{y} < Y \leq \overline{y}) = F_{X,Y}(\underline{x}, \overline{y}) - F_{X,Y}(\underline{x}, \underline{y})$ from $\Pr(X \leq \overline{x}, \underline{y} < Y \leq \overline{y}) = F_{X,Y}(\overline{x}, \overline{y}) - F_{X,Y}(\overline{x}, \underline{y})$. \Box

The definition of (X, Y) being discrete and continuous, respectively, is as before.

Definition 5.3. The *joint PMF* $P_{X,Y}$ for a pair of discrete r.v.'s (X, Y) is defined $P_{X,Y}(k, \ell) = \Pr(X = k, Y = \ell)$ for all k, ℓ .

Theorem 5.4. (PROPERTIES OF JOINT PMF)

- 1. $P_{X,Y}(k,\ell) \in [0,1]$ and $\sum \sum_{\text{all } k,\ell} P_{X,Y}(k,\ell) = 1$,
- 2. $P_X(k) = \sum_{\text{all } \ell} P_{X,Y}(k,\ell)$ and $P_Y(\ell) = \sum_{\text{all } k} P_{X,Y}(k,\ell)$,
- 3. $Pr((X,Y) \in A) = \sum \sum_{\text{all } (k,\ell) \in A} P_{X,Y}(k,\ell) \text{ for } A \subset \mathbb{R}^2.$

Proof. By analogy with the proof for one dimensional r.v.

Definition 5.5. The *joint PDF* $f_{X,Y}$ for a pair continuous r.v.'s (X,Y) is defined $f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$ for $x, y \in \mathbb{R}$.

Theorem 5.6. (PROPERTIES OF JOINT PDF)

- 1. $f_{X,Y}(x,y) \ge 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dxdy = 1$,
- 2. $F_{X,Y}(x,y) = \int_{u=-\infty}^{u=x} \int_{v=-\infty}^{v=y} f_{X,Y}(u,v) \, du dv$,
- 3. $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$ and $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$,
- 4. $\Pr((X,Y) \in A) = \iint_{\{(x,y) \in \mathbb{R}^2 : (x,y) \in A\}} f_{X,Y}(x,y) \, dx \, dy \text{ for } A \subset \mathbb{R}^2.$

Proof. (2) Follows as $F_{X,Y}$ is primitive to $f_{X,Y}$ with $F_{X,Y}(-\infty, y) = F_{X,Y}(x, -\infty) = 0$.

(3) Follows by differentiation of (2).

(4) All $A \subseteq \mathbb{R}^2$ can be built by sets of type $(-\infty, x] \times (-\infty, y]$ using basic set operations and thus (4) can be derived from (2) using the axioms of probability measures.

(1) Follows since $f_{X,Y}(x,y) \ge 0$ by (4) and taking $A = \mathbb{R}^2$ in (4), respectively. \Box

Example 5.1. For $f_{X,Y}(x,y) = \frac{1}{2} e^{-x-y/2}$ for $x, y \ge 0$ we have

$$\Pr(X > Y) = \iint_{\{(x,y) \in \mathbb{R}^2 : x > y\}} f_{X,Y}(x,y) \, dx \, dy = \int_0^\infty \left(\int_y^\infty e^{-x} \, dx \right) \frac{1}{2} \, e^{-y/2} \, dy = \frac{1}{3}.$$

Example 5.2. For $f_{X,Y}(x,y) = \frac{1}{\sqrt{3}\pi} e^{-\frac{2}{3}(x^2 - xy + y^2)}$ for $x, y \in \mathbb{R}$ we have $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sqrt{3/4}} e^{(y - \frac{1}{2}x)^2/(2(3/4))} \, dx \frac{1}{\sqrt{2\pi}} e^{-x^2/2} = \phi(x),$

since the integrand of the second integral is $f_{N(x/2,3/4)}(y)$ so the integral is 1.

Theorem 5.7. For a function $g : \mathbb{R}^2 \to \mathbb{R}$ we have

$$E(g(X,Y)) = \begin{cases} \sum_{\text{all } k,\ell} g(k,\ell) P_{X,Y}(k,\ell) & \text{for } (X,Y) \text{ discrete,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy & \text{for } (X,Y) \text{ continuous.} \end{cases}$$

Proof. By analogy with the proof for one dimensional r.v.

Theorem 5.8. (LINEARITY) For r.v.'s X_1, \ldots, X_n and $a_1, \ldots, a_n \in \mathbb{R}$ we have

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E(X_i).$$

Proof. By property (3) of joint PDF we have

$$E\left(\sum_{i=1}^{n} a_{i} X_{i}\right) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \left(\sum_{i=1}^{n} a_{i} x_{i}\right) f_{X_{1},\dots,X_{n}}(x_{1},\dots,x_{n}) \, dx_{1}\dots dx_{n}$$

= $\sum_{i=1}^{n} a_{i} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} x_{i} f_{X_{1},\dots,X_{n}}(x_{1},\dots,x_{n}) \, dx_{1}\dots dx_{n}$
= $\sum_{i=1}^{n} a_{i} \int_{-\infty}^{\infty} x_{i} f_{X_{i}}(x_{i}) \, dx_{i} = \sum_{i=1}^{n} a_{i} E(X_{i}).$

Definition 5.9. The variance $\operatorname{Var}(X) = \sigma_X^2$ an r.v. X is defined $\operatorname{Var}(X) = E((X - \mu_X)^2)$. The standard deviation of X is $\sigma_X = \sqrt{\operatorname{Var}(X)}$.

Definition 5.10. The correlation $R_{X,Y}$ between two r.v.'s X and Y is defined $R_{X,Y} = E(XY)$. The covariance Cov(Y,Y) between X and Y is defined $Cov(Y,Y) = E((X - \mu_X)(y - \mu_Y)).$

Clearly $\operatorname{Var}(X) = \operatorname{Cov}(X, X)$ and from linearity of the mean we see that $\operatorname{Cov}(X, Y) = R_{X,Y} - \mu_X \mu_Y$. More generally we obtain the following result in the same fashion:

Theorem 5.11. 1. $R_{\sum_{i=1}^{m} a_i X_i, \sum_{j=1}^{n} b_j Y_j} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j R_{X_i, Y_j},$ 2. $\operatorname{Cov}\left(\sum_{i=1}^{m} a_i X_i, \sum_{j=1}^{n} b_j Y_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j \operatorname{Cov}(X_i, Y_j),$ 3. $\operatorname{Var}\left(\sum_{i=1}^{m} a_i X_i\right) = \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j \operatorname{Cov}(X_i, X_j).$

Definition 5.12. The correlation coefficient $\rho_{X,Y}$ between X and Y is defined $\rho_{X,Y} = \operatorname{Cox}(X,Y)/\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}$.

Theorem 5.13. $|\rho_{X < Y}| \le 1$.

Proof. $0 \leq \operatorname{Var}((X/\sigma_X) \pm (Y/\sigma_Y)) = 2 \pm 2 \rho_{X,Y}.$

Definition 5.14. Two r.v.'s X and Y are independent if $Pr(X \in A, Y \in B) = Pr(X \in A) Pr(Y \in B)$ for $A, B \subset \mathbb{R}$.

Theorem 5.15. Two r.v.'s X and Y are independent if and only if $F_{X,Y}(x,y) = F_X(x)F_Y(y)$ if and only if $P_{X,Y}(k,\ell) = P_X(k)P_Y(\ell)$ for (X,Y) discrete or $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for (X,Y) continuous.

Proof. By inspection.

Definition 5.16. Two r.v.'s X and Y are uncorrelated if Cov(X, Y) = 0.

Theorem 5.17. Two independent r.v.'s X and Y are uncorrelated.

Proof. (Continuous case.) As $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for X and Y independent $E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x,y) dxdy = \left(\int_{-\infty}^{\infty} x f_X(x) dx\right) \left(\int_{-\infty}^{\infty} y f_Y(y) dy\right) = \mu_X \mu_Y.$

Definition 5.18. A jointly Gaussian/Normal r.v. (X, Y) has PDF

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho_{X,Y}^2}} \exp\left\{-\frac{\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho_{X,Y}\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2}{2\left(1-\rho_{X,Y}^2\right)}\right\}$$

for $(x, y) \in \mathbb{R}^2$.

In the above definition it is readily shown by direct calculation that $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2$ and $\rho_{X,Y}$ are the expectations, variances and correlation coefficient for X and Y.

Example 5.2. (CONTINUED) The PDF $f_{X,Y}(x,y) = \frac{1}{\sqrt{3}\pi} e^{-\frac{2}{3}(x^2 - xy + y^2)}$ is bivariate Gaussian with $\mu_X = \mu_Y = 0$, $\sigma_X^2 = \sigma_Y^2 = 1$ and $\rho_{X,Y} = \frac{1}{2}$.

Definition 5.19. For a discrete pair of r.v.'s (X, Y) he conditional PMF of X given that Y = y is defined $P_{X|Y}(x|y) = \Pr(X = x|Y = y) = \frac{P_{X,Y}(x,y)}{P_Y(y)}$.

For a continuous pair of r.v.'s (X, Y) the conditional PDF of X given that Y = y is defined $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$.

Definition 5.20.

$$\Pr(X \in A | Y = y) = \begin{cases} \sum_{\text{all } x \in A} P_{X|Y}(x|y) & \text{for } (X, Y) \text{ discrete,} \\ \int_{x \in A} f_{X|Y}(x|y) \, dx & \text{for } (X, Y) \text{ continuous.} \end{cases}$$

Definition 5.21.

$$E(X|Y=y) = \begin{cases} \sum_{\text{all } x} x P_{X|Y}(x|y) & \text{for } (X,Y) \text{ discrete,} \\ \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx & \text{for } (X,Y) \text{ continuous.} \end{cases}$$

Theorem 5.22. (LAW OF TOTAL PROBABILITY)

$$\Pr(X \in A) = \begin{cases} \sum_{\text{all } y} \Pr(X \in A | Y = y) P_Y(y) & \text{for } (X, Y) \text{ discrete,} \\ \int_{-\infty}^{\infty} \Pr(X \in A | Y = y) f_Y(y) dy & \text{for } (X, Y) \text{ continuous.} \end{cases}$$

Proof. (Discrete case.) $\sum_{\text{all } y} \Pr(X \in A | Y = y) P_Y(y) = \sum_{\text{all } x \in A, \text{ all } y} P_{X,Y}(x, y).$

In an entirely similar fashion one proves the following result:

Theorem 5.23. (LAW OF TOTAL EXPECTATION)

$$E(X) = \begin{cases} \sum_{\text{all } x} E(X|Y=y) P_Y(y) & \text{for } (X,Y) \text{ discrete,} \\ \int_{-\infty}^{\infty} E(X|Y=y) f_Y(y) dy & \text{for } (X,Y) \text{ continuous.} \end{cases}$$

Definition 5.24. The joint moment of an r.v. (X, Y) is defined $E(X^mY^n)$ and the joint central moment $E((X - \mu_X)^m(Y - \mu_Y)^n)$ for $m, n \in \mathbb{N}$.

Definition 5.25. The *joint CHF* $\Phi_{X,Y}$ for a pair of r.v. (X,Y) is defined $\Phi_{X,Y}(\omega_1,\omega_2) = E(e^{j(\omega_1X+\omega_2Y)})$ for $\omega_1,\omega_2 \in \mathbb{R}$.

Definition 5.26. The *joint PGF* $H_{X,Y}$ of an \mathbb{N}^2 -valued r.v. (X,Y) is defined $H_{X,Y}(z_1, z_2) = E(z_1^X z_2^Y) = \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} z_1^k z_2^\ell P_{X,Y}(k,\ell)$ for $z_1, z_2 \in [0,1]$.

By analogy with the one dimensional case we obtain the following two results:

Theorem 5.27. $(-j)^{m+n} \Phi_{X,Y}^{(m,n)}(0,0) = E(X^m Y^n)$ for $m, n \in \mathbb{N}$.

Theorem 5.28.
$$H_{X,Y}^{(m,n)}(1,1) = E(X(X-1) \cdot \ldots \cdot (X-m+1)Y(Y-1) \cdot \ldots \cdot (Y-n+1))$$
 and $P_{X,Y}(m,n) = \frac{1}{m!n!} H_{X,Y}^{(m,n)}(0,0)$ for $m, n \in \mathbb{N}$.

Theorem 5.29. If X and Y are independent r.v.'s then

$$\begin{cases} P_{X+Y}(m) = \sum_{\text{all } k} P_X(k) P_Y(m-k) = \sum_{\text{all } \ell} P_X(m-\ell) P_Y(\ell) & \text{for } X \text{ and } Y \text{ discrete,} \\ f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, dy & \text{for } X \text{ and } Y \text{ continuous.} \end{cases}$$

Proof. (Continuous case.)

$$f_{X+Y}(z) = \frac{d}{dz} \Pr(X+Y \le z) = \frac{d}{dz} \iint_{\{(x,y)\in\mathbb{R}^2: x+y\le z\}} f_{X,Y}(x,y) \, dxdy$$
$$= \frac{d}{dz} \int_{-\infty}^{\infty} f_X(x) \left(\int_{-\infty}^{z-x} f_Y(y) \, dy \right) dx = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx.$$

The proof can alternatively be done using CHF techniques as in the next example. \Box

Example 4.2. (CONTINUED) For X and Y independent $N(m_1, \sigma_1^2)$ and $N(m_2, \sigma_2^2)$ distributed, respectively, we have

$$\Phi_{X+Y}(\omega) = E(e^{j\omega(X+Y)}) = E(e^{j\omega X}e^{j\omega Y}) = E(e^{j\omega X})E(e^{j\omega Y}) = e^{j(m_1+m_2)\omega - \frac{1}{2}(\sigma_1^2 + \sigma_2^2)\omega^2},$$

since $e^{j\omega X}$ and $e^{j\omega Y}$ are uncorrelated. Hence X + Y is $N(m_1+m_2, \sigma_1^2+\sigma^2)$.

Theorem 5.30. For a continuous r.v. (X, Y) with joint PDF $f_{X,Y}$ and functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ the r.v. $(Z, W) = (g_1(X), g_2(Y))$ is continuous with

where $(h_1, h_2) : \mathbb{R}^2 \to \mathbb{R}^2$ is the inverse transformation to $(g_1, g_2) : \mathbb{R}^2 \to \mathbb{R}^2$.

Proof. By change of variable in two dimensional integral we have

$$\Pr((Z,W) \in A) = \Pr((g_1(X,Y), g_2(X,Y)) \in A)$$

$$= \iint_{\{(x,y) \in \mathbb{R}^2 : (g_1(x,y), g_2(x,y)) \in A\}} f_{X,Y}(x,y) \, dx \, dy = \begin{bmatrix} x = h_1(z,w) \\ y = h_2(z,w) \end{bmatrix}$$

$$= \iint_{\{(x,y) \in \mathbb{R}^2 : (z,w) \in A\}} f_{X,Y}(h_1(z,w), h_2(z,w)) \Big/ \left| \begin{vmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \end{vmatrix} \right| \Big|_{\substack{x = h_1(z,w) \\ y = h_2(z,w)}} dz \, dw.$$