
Lecture notes MVE136 Fall 2019. Part 2: Random Processes

8. Random processes

Definition 8.1. A random process is a family X(t) = X(t, ξ) of r.v.’s indexed by

time t ∈ T in a time parameter set T .

So for each time t ∈ T we have a random variable X(t, ξ) which is a function of the

outcome ξ ∈ S of a random experiment. The time parameter set is either discrete, e.g.,

T = N, Z, {0, . . . , n} or continuous, e.g., T = R+, R, [a, b].

As the CDF (or PMF/PDF) is used to study r.v.’s one might belive the CDF FX(t)

of a random process X(t) for all t ∈ T tell a lot about the process. This is not true:

Example 8.1. Consider the random processes Y (t), t ∈ R, and {Z(t),t∈ R,

where each Y (t) r.v. is N(0, 1) independent of all other process values Y (s), s 6= t,

while Z(t) = X for the one and same N(0, 1) r.v. X for all t. Then FY (t)(x) =

FZ(t)(x) = Φ(x) for all t, x despite that Y (t) and Z(t) are more or less as different

as they can be - the first totally independent and therefore widely oscillating - the

other totally dependent equal to a single constant random value at all times.

To have full probabilistic information about a random process one need to know

FX(t1),...,X(tn)(x1, . . . , xn) = Pr(X(t1) ≤ x1, . . . , X(tn) ≤ xn)

for all t1, . . . , tn ∈ T , x1, . . . , xn ∈ R and n ∈ N.

Example 8.1. (Continued) For Y (t) and Z(t) as before we have

FY (t1),...,Y (tn)(x1, . . . , xn) = Pr(Y (t1) ≤ x1, . . . , Y (tn) ≤ xn) = Φ(x1) · . . . · Φ(xn),

FZ(t1),...,Z(tn)(x1, . . . , xn) = Pr(Z(t1) ≤ x1, . . . , Z(tn) ≤ xn) = Φ(min{x1 . . . , xn}).

More partial information about the process that is often sufficient for needs in engi-

neering mathematics is given by the following three functions:

Definition 8.2. 1. The mean function µX(t) = E(X(t)) for t ∈ T ,

2. the autocorrelation function (ACF) RXX(s, t) = E(X(s)X(t)) for s, t ∈ T ,

3. the autocovariance function CXX(s, t) = Cov(X(s), X(t)) for s, t ∈ T .
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Note that RXX(s, t) = CXX(s, t) + µX(s)µX(t).

Example 8.1. (Continued) Here µY (t) = µZ(t) = 0, RY Y (s, t) = CY Y (s, t) = 1

and 0 for s = t and s 6= t, respectively, while RZZ(s, t) = CZZ(s, t) = 1 for all s, t.

Example 8.2. (Cosine process) For X(t) = U cos(ωt) + V sin(ωt) for t ∈ R

where U and V are zero-mean uncorrelated r.v.’s with variance σ2 and ω ∈ R is

a constant we have µX(t) = 0 and

RXX(s, t) = E(U2) cos(ωs) cos(ωt) + E(V 2) sin(ωs) sin(ωt) = σ2 cos(ω(t− s)).

Example 8.3. For X(t) = a sin(ωt+ Θ) for t ∈ R where Θ is uniformly distribu-

ted over [0, 2π] and ω, a ∈ R are constants we have µX(t) = 0 and

RXX(s, t) = a2E
(
1
2 cos(ω(s− t)) + 1

2 cos(ω(s+ t) + Θ)
)

= 1
2 a

2 cos(ω(t− s))

as the mean of the second term in the middle step is zero by symmetry.

Definition 8.3. For two random processes X(t) and Y (t) we define

1. the crosscorrelation function RXY (s, t) = E(X(s)Y (t)),

2. the crosscovariance function CXY (s, t) = Cov(X(s), Y (t)).

Definition 8.4. A random process X(t) is strictly stationary if

FX(t1+h),...,X(tn+h)(x1, . . . , xn) = FX(t1),...,X(tn)(x1, . . . , xn) for all t1, . . . , tn and h.

Strict stationarity means that the probability laws that governs the behaviour of the

process are time invariant (but not that the process is constant or something such).

Example 8.1. (Continued) Y (t) and Z(t) as before are stationary as we have

seen that their multivariate CDF’s do not depend at all on the times involved.

Definition 8.5. A random processX(t) is wide sense stationary (WSS) if µX(t) =

µX and RXX(t, t+ τ) = RXX(τ) do not depend on t.

Theorem 8.6. A strictly stationary process is WSS.

Proof. Follows from that FX(t)(x) and FX(t),X(t+τ)(x, y) do not depend on t. �

All examples of process we have seen so far are WSS.
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Theorem 8.7. (Properties of WSS ACF) For X(t) WSS we have

1. RXX(τ) = RXX(−τ),

2. E(X(t)2) = RXX(0),

3. |RXX(τ)| ≤ RXX(0).

Proof. (1) RXX(τ) =E(X(t)X(t+τ)) =E(X(t+τ)X(t)) =E(X(t)X(t−τ)) =RXX(−τ).

(2) Take τ = 0 in proof of (1).

(3) 0 ≤ E
(
(X(t)±X(t+τ))2

)
= 2RXX(0)± 2RXX(τ). �

While cos(τ) is an ACF by previous examples sin(τ) is not by (1) and (3) above.

Definition 8.8. A WSS random processes X(t), t ∈ R, is

1. ergodic in the mean if lim
t→∞

1
2t

∫ t
−tX(s) ds = µX ,

2. ergodic in the autocorrelation if lim
t→∞

1
2t

∫ t
−tX(s)X(s+τ) ds = RXX(τ).

Theorem 8.9. A WSS process is ergodic in the mean if limτ→∞RXX(τ) = µ2X .

Proof. As E
(
1
2t

∫ t
−tX(s) ds

)
= µX it is enough to prove that

Var
(
1
2t

∫ t
−tX(s) ds

)
= Cov

(
1
2t

∫ t
−tX(r) dr, 1

2t

∫ t
−tX(s) ds

)
= 1

4t2

∫ t
−t
∫ t
−tCXX(r, s) drds→ 0

as t→∞ which holds as CXX(r, s) = RXX(s− r)− µ2X → 0 for large s− r and contri-

butions to the integral for non-large s− r are eventually nullified by factor 1/(4t2). �

Example 8.3. (Continued) The theorem do not apply to X(t) = a sin(ωt+ Θ)

but ergodicity in mean follows from that 1
2t

∫ t
−tX(s) ds ∈ [−aπ/(2t), aπ/(2t)].

Ergodicity in the autocorrelation follows from a version of the previous argument

together with the fact that X(s)X(s+ τ) = a2

2 cos(ωτ) + a2

2 cos(2ωs+ ωτ + θ).

Definition 8.10. A random process X(t), t ∈ T , is Gaussian/normal if
∑n

i=1

aiX(ti) is a Gaussian r.v. for each choice of t1, . . . , tn ∈ T and a1, . . . , an ∈ R.

Example 8.2. (Continued) The process X(t) = U cos(ωt) + V sin(ωt) with U

and V independent N(0, σ2) is Gaussian since∑n
i=1 aiX(ti)= U

∑n
i=1 ai cos(ωti) + V

∑n
i=1 ai sin(ωti)

= N
(

0, σ2
(∑n

i=1 ai cos(ωti)
)2

+ σ2
(∑n

i=1 ai sin(ωti)
)2)

.
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Each Gaussian process value X(t) is Gaussian but conversely the property that each

process value is Gaussian is a much weaker demand than the process being Gaussian.

Theorem 8.11. A Gaussian process X(t) is fully probabilistically determined by

its mean function and autocovariance function (or ACF).

Proof. As
∑n

i=1 ωiX(ti) is N(m,σ2) we have

ΦX(t1),...,X(tn)(ω1, . . . , ωn) = E
(
ej

∑n
i=1 ωiX(ti)

)
= E

(
ejN(m,σ2)

)
= ejm−

1
2
σ2
,

where m =
∑n

i=1 ωiµX(ti) and σ2 =
∑n

i=1

∑n
j=1 ωiωjCXX(ti, tj). �

Theorem 8.12. A Gaussian process is strictly stationary if WSS.

Proof. A WSS Gaussian process has same mean function and ACF as if strictly sta-

tionary since strict stationary implies WSS. But since the process is probabilistically

determined by its mean function and ACF it is strictly stationary. �

Theorem 8.13. Two Gaussian process values are independent if uncorrelated.

Proof. A pair of uncorrelated process values have same means, variances and autocovari-

ance as if independent but since their joint distribution is determined by their means,

variances and autocovariance they are independent. �

Example 8.2. (Continued) For U and V independent N(0, σ2) as before we

have Pr(X(1) + 2X(2) > 3) = Pr(N(m,Σ2) > 3) = 1−Φ((3−m)/Σ) where m =

E(X(1) + 2X(2)) = µX + 2µX = 0 and Σ2 = Var(X(1) + 2X(2)) = Cov(X(1) +

2X(2), X(1)+2X(2)) = Var(X(1))+4 Cov(X(1), X(2))+4 Var(X(2)) =[zero-mean]

RXX(0) + 4RXX(1) + 4RXX(0) = 5σ2 + 4σ2 cos(ωt).

There are two equivalent definitions of a Poisson process that occurs naturally as the

counting process of the number of radioactive decays of a piece of radioactive matter:

Definition 8.14. A Poisson process X(t), t ≥ 0, with intensity λ > 0 starts at

X(0) = 0, spends a exponentially distributed time with mean 1/λ at that value,

then changes value to 1, spends an independent exponentially distributed time

with mean 1/λ at that value, then changes value to 2, spends an independent

exponentially distributed time with mean 1/λ at that value, then changes ... .

4



Definition 8.15. A Poisson process X(t), t ≥ 0, with intensity λ > 0 is given by

1. X(0) = 0,

2. X(t+ s)−X(s) is Po(λt) for s, t ≥ 0,

3. X(t+ s)−X(s) is independent of X(r), r ∈ [0, s], for s, t ≥ 0.

Theorem 8.16. A Poisson process has µX(t) = λ t and CXX(s, t) = λmin{s, t}.

So a Poisson process is not WSS.

Proof. µX(t) = E(X(t)) = E(X(t)−X(0)) = E(Po(λt)) = . . . = λt while CXX(s, t) =

Cov(X(s), X(t)) = Cov(X(s), X(s))+Cov(X(s), X(t)−X(s)) = Var(X(s))+0 = . . . =

λs for s ≤ t as X(s) and X(t)−X(s) are independent giving CXX(s, t) = λmin{s, t}.�

Example 8.4. For a Poisson process X(t) we have

Pr(X(1) = 1|X(2) = 2) = Pr(X(1)=1, X(2)=2)
Pr(X(2)=2) = Pr(X(1)=1, X(2)−X(1)=1)

Pr(X(2)=2)

= Pr(X(1)=1)Pr(X(2)−X(1)=1)
Pr(X(2)=2)

= Pr(Po(λ)=1)Pr(Po(λ)=1)
Pr(Po(2λ)=2) = . . . = 1

2 .

9. Markov chains

Definition 9.1. A discrete time discrete valued random process Xn, n ∈ N, is

called a Markov chain if

Pr(Xn+1 = j|Xn = i,Xn−1 = xn−1, . . . , X0 = x0) = Pr(Xn+1 = j|Xn = i) = pij

does not depend on x0, . . . , xn−1 and n but only on i, j.

The probabilities pij are called transistion probabilities and are gathered in

the transition matrix P with elements (P )ij = pij .

Example 9.1. (Kid collecting super heroes) A fast food restaurant ran-

domly gives kid one out of four different super hero figures at each visit of restau-

rant. The number Xn of different super heroes collected after n visits to restau-

rant is Markov chain with X0 = 0, pii = 0, 1
4 ,

1
2 ,

3
4 , 1 for i = 0, 1, 2, 3, 4 and

pi,i+1 = 1, 3
4 ,

1
2 ,

1
4 for i = 0, 1, 2, 3 while pij = 0 for all other combinations of i, j.
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Example 9.2. (Simple random walk) X0 = 0 and Xn =
∑n

i=1 Yi for n ≥ 1

where {Yi}∞i=1 are independent with Pr(Yi = 1) = p and Pr(Yi = −1) = 1− p = q

giving pi,i+1 = p and pi,i−1 = q while pij = 0 for all other combinations of i, j.

Example 9.3. (Gamblers ruin) Gambler has initial fortune $ X0 = d while

“the house” has intial fortune $ b−d. The fortune of the gambler Xn after n bets

is a Markov chain with pi,i+1 = p and pi,i−1 = 1− p = q for i = 1, . . . , b− 1 while

p00 = pbb = 1 and pij = 0 for all other combinations of i, j, i.e., gambler wins $

one with probability p and loses $ one with probability q in each bet but stops

betting when Xn = 0 or b as then he or bank is broke, respectively.

Definition 9.2. The n-step transition probabilities p
(n)
ij = Pr(Xm+n = j|Xm = i)

are elements of the n-step transition matrix P (n), i.e., (P (n))ij = p
(n)
ij .

Theorem 9.3. (Chapman-Kolmogorov) P (n) = Pn for n ∈ N.

Proof. Follows from induction using that

(P (n+1))ij = Pr(Xm+n+1=j|Xm= i) = Pr(Xm+n+1=j,Xm=i)
Pr(Xm=i)

=
∑
all k

Pr(Xm+n+1=j,Xm+1=k,Xm=i)
Pr(Xm+1=k,Xm=i)

Pr(Xm+1=k,Xm=i)
Pr(Xm=i)

=
∑
all k

Pr(Xm+n+1=j|Xm+1=k,Xm= i) pik

=
∑
all k

(P (n))kj pik = (P P (n))ij . �

Definition 9.4. The distribution at time n of Markov chain Xn is the row matrix

π(n) with elements (π(n))i = Pr(Xn = i).

Theorem 9.5. π(m+ n) = π(m)Pn for m,n ∈ N.

Proof. By the law of total probability and Chapman-Kolmorgorov

(π(m+n))i = Pr(Xm+n= i) =
∑
all k

Pr(Xm+n= i|Xm=k) Pr(Xm=k) =
∑
all k

(Pn)ki (π(m))k. �

Definition 9.6. A row matrix π with positive elements is a stationary distribution

for a Markov chain if π P = π and
∑

all i(π)i = 1.

Theorem 9.7. If π(m) = π then π(m+ n) = π for m,n ∈ N.
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Proof. π(m+ n) = π(m)Pn = π Pn = π Pn−1 = . . . = π. �

Example 9.1. (Continued) For the super hero count chain π = (0 0 0 0 1).

Definition 9.8. The mean time to return µi to a state (=possible value) i of a

Markov chain Xn is defined µi = E(min{n ≥ 1 : Xn = i}|X0 = i).

Definition 9.9. A state j is accesible from a state i (i→ j) if p
(n)
ij > 0 for some

n while i and j communicate (i↔ j) if i→ j and j → i.

If all states communicate the chain is called irreducible.

Simple random walk is irreducible but super hero count and gamblers ruin are not.

Definition 9.10. The period d(i) of state i is defined d(i) = gcd{n≥1 : p
(n)
ii >0}.

The chain is aperiodic if all d(i) = 1.

Simple random walk has all d(i) = 2 while super hero count has d(i) = 1 for i ≥ 1.

The following theorem is very difficult to prove but is intiutively predictable:

Theorem 9.11. An irreducible aperiodic chain has a stationary distribution π if

and only if all mean return times µi < ∞ and in that case (π)i = 1/µi for all i.

Further, p
(n)
ij → 1/µj as n→∞ for all j regardless of the µj ’s are finite or not.

Definition 9.12. State i is transient if Pr(Xn = i for some n ≥ 1|X0 = i) < 1.

State i is reccurent if Pr(Xn = i for some n ≥ 1|X0 = i) = 1.

Here are another two very important but quite difficult to prove theorems:

Theorem 9.13. For an irreducible chain either all states are reccurent or all

states are transient. Further, all states have the same period and the mean return

time µi <∞ for one state i if and only if µi <∞ for all states i

Theorem 9.14. State i is reccurent if and only if
∑∞

n=1 p
(n)
ii =∞.

Example 9.2. (Continued) For simple random walk we have p
(n)
ii = 0 and(

n
n/2

)
pn/2(1−p)n/2 for n odd and even, respectively, as going from i to i in n steps

means equally many steps n/2 up and down, so p
(n)
ii = Pr(Bin(n, p) = n/2).

By Stirlings’s formula we have n! ∼
√

2πnnne−n as n→∞ (in the sense that
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the ratio between the left hand side and right hand side of ∼ goes to 1 as n→∞).

To check whether simple random walk is reccurent or transient we check whether∑∞
n=1 p

(n)
ii =

∑∞
n=1

(
2n
n

)
pn(1− p)n =∞ or <∞. By Striling’s formula(

2n
n

)
pn(1− p)n = (2n)! pn(1−p)n

(n!) (n!) ∼
√
4πn (2n)2ne−2npn(1−p)n√
2πnnne−n

√
2πnnne−n = (4p(1−p))n√

πn
as n→∞.

As 4p(1− p) = 1 and < 1 for p = 1
2 and 6= 1

2 it follows from theorem above that

chain is reccurent for p = 1
2 and transient otherwise.

Example 9.1. (Continued) If T = min{n ≥ 1 : Xn = 4} for super hero count

chain we have by direct calculation

E(T ) = E
( waiting time
r.v. with p = 1

)
+ E

( waiting time

r.v. with p = 3
4

)
+ E

( waiting time

r.v. with p = 1
2

)
+ E

( waiting time

r.v. with p = 1
4

)
= 1 + 4

3 + 2 + 4 = 25
3

as the consecutive moves from 0 y 1, 1 y 2, 2 y 3 and 3 y 4 probabilistically

are equivalent to tossing unbalanced coin until heads with probability 1, 3
4 , 1

2 and

1
4 for heads, respectively, until first heads.

Consider modified super hero chain X̂n, n ∈ N, where we change row five in the

transition matrix from (0 0 0 0 1) to (1 0 0 0 0), that is p̂40 = 1 for modified

chain instead of p44 = 1 for original chain. Modfied chain X̂n will be irreducible

and aperiodic by inspection. Further, we have E(T ) for original chain equals

µ̂0 − 1 for modified chain, also by inspection. Solving the equation for stationary

distribution π̂ P̂ = π̂ and
∑

all i(π̂)i = 1 we readily obtain π̂ =
(

3
28

4
28

6
28

12
28

3
28

)
.

And we find again that E(T ) = µ̂0−1 = 1/π̂0−1 = 28
3 = 25

3 using theorem above.

That mean E(p) of waiting time r.v. X is 1/p can be seen from that E(p) = 1 +

(1−p)E(p) (as after one coin toss the probability is 1− p that you still are waiting for

heads) or by differentiating the CHF ΦX(ω) = . . . = p/(e−jω − (1−p)) at zero.
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