
Lecture notes MVE136 Fall 2019. Part 3: LTI Systems

10. Power Spectral Densities

Definition 10.1. Two WSS processes X(t) and Y (t) are called jointly WSS if

RXY (t, t+ τ) = RXY (τ) does not depend on t.

Example 10.1. If X(t) is WSS and Y (t) = X(−t) then RXY (t, t + τ) =

E(X(t)X(−t − τ)) = RXX(2t + τ) which depends on t so that X(t) and Y (t)

are not jointly WSS unless RXX(τ) = RXX(0) is constant.

Definition 10.2. The power spectral density (PSD) SXX of a WSS process X(t)

is the Fourier transform of the ACF

SXX(f) = (FRXX)(f) =


∞∫
−∞

e−j2πfτRXX(τ) dτ for f ∈ R in continuous time,

∞∑
k=−∞

e−j2πfkRXX(k) for f ∈ [−1
2 ,

1
2 ] in discrete time.

The crosspectraldensity SXY between two jointly WSS processes X(t) and

Y (t) is defined SXY (f) = (FRXY )(f).

Corollary 10.3.

RXX(τ) = (F−1SXX)(τ) =


∫∞
−∞ ej2πfτSXX(f) df in continuous time,∫ 1/2
−1/2 ej2πfτSXX(f) df in discrete time.

RXY (τ) = (F−1SXY )(τ) =


∫∞
−∞ ej2πfτSXY (f) df in continuous time,∫ 1/2
−1/2 ej2πfτSXY (f) df in discrete time.

Proof. Fourier inversion formula and Fourier series expansion, respectively. �

The bandwidth is a certain measure of the width of the graph of the PSD. There

are several different ways to define bandwidth and a common one is the 3dB-bandwidth

which is the width of the zone were the PSD is at least half as big as its maximal value.

We use the notation z = <(z)− j =(z) for the complex conjugate of z ∈ C.

In the following theorem Property 3 is very deep and very difficult to prove:
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Theorem 10.4. (Properties of PSD) For X(t) WSS we have

1. SXX(f) is real,

2. SXX(f) = SXX(−f),

3. SXX(f) ≥ 0,

4.

E(X(t)2) = RXX(0) =


∫∞
−∞ SXX(f) df in continuous time,∫ 1/2
−1/2 SXX(f) df in discrete time.

5. For X(t) and Y (t) jointly WSS we have

E(X(t)Y (t)) = RXY (0) =


∫∞
−∞ SXY (f) df in continuous time,∫ 1/2
−1/2 SXY (f) df in discrete time.

Proof. (1)-(2) By symmetry ofRXX we have SXX(f) = SXX(−f) = (F(RXX(−·)))(f) =

(FRXX)(f) where the middle equality is by change of variable in the Fourier transform.

(4)-(5) Take τ = 0 in the inversion formulas of the previous corollary. �

Definition 10.5. White noise is a WSS zero-mean process N(t) with constant

PSD SNN (f) = N0/2 for some N0 > 0 so that RNN (τ) = (N0/2) δ(τ).

Above δ is Kronecker’s δ-function given by δ(0) = 1 and δ(k) = 0 for k ∈ Z \ {0} in

discrete time and Dirac’s δ-function given by
∫∞
−∞ δ(t)g(t) dt = g(0) in continuous time.

Sometimes white noise is also required to be Gaussian. White noise in continuous

time does not exist but is widely used in engineering math anyway. In discrete time

white noise is a sequence of zero-mean uncorrelated r.v.’s with common variance N0/2.

Example 10.2. The ACF RXX(τ) = e−α|τ | for τ ∈ R with α > 0 has PSD

SXX(f) =
∞∫
0

e−j2πfτe−ατ dτ+
0∫
−∞

e−j2πfτeατ dτ =
1

α+j2πf
+

1

α−j2πf
=

2α

α2+4π2f2
.

From this and the fact that Fourier transformation and Fourier inversion for sym-

metric functions are the same mathematical operations in continuous time we

conclude that the ACF RXX(τ) = 2α/(α2 + 4π2τ2) has PSD SXX(f) = e−α|f |.

The previous example illustrate the important fact that when calculating the PSD

of an ACF one do always earn another Fourier transform calculation for free (unless the
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ACF and PSD agree which happens only for the Gaussian bell function).

Example 8.3. (Continued) For X(t) = a sin(ωt + Θ) for t ∈ R where Θ is

uniformly distributed over [0, 2π] and ω, a ∈ R we have RXX(τ) = 1
2 a

2 cos(ωτ)

which gives SXX(f) = 1
4 a

2[δ(f − ω/(2π)) + δ(f + ω/(2π))] by the “backway

method” to figure what SXX(f) must be to produce the given ACF RXX(τ) =

(F−1SXX)(τ) by Fourier inversion rather than by Fourier transforming RXX .

Example 10.3. (AR(1)-process) Consider a discrete time zero-mean WSS pro-

cess Y [k] that satisfies Y [k] = a Y [k−1] + b e[k] where a ∈ (−1, 1), b ∈ R and e[k]

is unit variance white noise with Cov(e[k], Y [k−`]) = 0 for ` ≥ 1. We have

RY Y (0) = E(Y [k]2) = E((a Y [k−1] + b e[k])2)

= a2E(Y [k−1]2) + 2 abE(Y [k−1]e[k]) + b2E(e[k]2) = a2RY Y (0) + b2

so that RY Y (0) = b2/(1− a2). For k ≥ 1 we further have

RY Y (k) = E(Y [`]Y [`+k]) = E
(
Y [`] (a Y [k+`−1] + b e[k+`])

)
= aRY Y (k−1)

which is a difference equation with solution RY Y (k) = a|k|b2/(1− a2). And so

SY Y (f) =
∞∑
k=0

akb2

1−a2
e−j2πkf +

∞∑
k=0

akb2

1−a2
ej2πkf − b2

1−a2
= . . . =

b2

|1−a e−j2πf |2
.

Non-parametric spectral estimation

Given an observation {X(t)}t∈[−t0,t0] of a continous time WSS process X(t) the natural

estimate (based on ergodicity in the autocorrelation) of its ACF RXX if unknown is

R̂XX(τ) =


1

2t0− τ

t0−|τ |/2∫
−t0+|τ |/2

X(t−|τ |/2)X(t+ |τ |/2) dt for |τ | ≤ 2t0,

0 for |τ | > 2t0.

It is suitable to damp RXX(τ)-estimates for big |τ | close to 2t0 with a windowing func-

tion |w(τ)| ≤ 1 since such estimates are uncertain because based on few data. The re-

sulting windowed estimate is R̂
(w)
XX(τ) = w(τ)R̂XX(τ). A common window choice is

w(τ) = tri(τ/(2t0)) =

1− |τ |/(2t0) for |τ | ≤ 2t0,

0 for |τ | > 2t0.

This yields the most commonly used ACF estimate
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R̂
(tri)
XX (τ) = tri(τ/(2t0))R̂XX(τ) =


1

2t0

t0−|τ |/2∫
−t0+|τ |/2

X(t−|τ |/2)X(t+|τ |/2) dt for |τ |≤2t0,

0 for |τ |>2t0.

To estimate SXX(f) if unknown one uses ŜXX(f) = (FR̂XX)(f). The most com-

monly used PSD estimate thus becomes Ŝ
(tri)
XX (f) = (FR̂(tri)

XX )(f).

We write Xt0(t) for the process that is X(t) for t ∈ [−t0, t0] and 0 otherwise.

Theorem 10.6. (The Periodogram) Ŝ
(tri)
XX (f) = |(FXt0)(f)|2/(2t0).

Proof.

Ŝ
(tri)
XX (f) =

1

2t0

∞∫
−∞

e−j2πτf
( t0−|τ |/2∫
−t0+|τ |/2

X(t−|τ |/2)X(t+ |τ |/2) dt
)
dτ

=
1

2t0

∞∫
−∞

e−j2πτf
( t0∫
−t0

Xt0(u)Xt0(u− τ) du
)
dτ =

1

2t0
(F(Xt0 ? (Xt0(−·)))(f). �

Parametric spectral estimation

As opposed to non-parametric estimation where no detailed theoretical information

about the process is available there is parametric estimation where data is assumed to

come from a fully theoretically specified process except that one or a few parameters

have unkown value(s). We illustrate parametric spectral estimation by an example:

Example 10.3. (Continued) For observed data {Y [k]}nk=0 of the AR(1)-process

Y [k] = a Y [k−1] + b e[k] with the parameters a ∈ (−1, 1) and b2 > 0 unknown we

may use the ACF RY Y (k) = a|k|b2/(1− a2) to estimate a and b2 by solving

b̂2

1− â2
= R̂Y Y (0) =

1

n+1

n∑
k=0

Y [k]2 and
â b̂2

1− â2
= R̂Y Y (1) =

1

n

n∑
k=1

Y [k]Y [k−1]

for â and b̂2 and then estimate ŜY Y (f) = b̂2/|1− â e−j2πf |2.

11. Linear Timeinvariant Systems

Definition 11.1. A linear time invariant (LTI) system with insignal x(t) and

outsignal y(t) = (Tx)(t) satisfies

1. (T (αx1 +β x2))(t) = α (Tx1)(t) + β (Tx2)(t) for α, β ∈ R,

2. (T (x(· − t0)))(t) = (Tx)(t− t0) for t0 ∈ R.
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An LTI system either has discrete time t ∈ Z or continuous time t ∈ R.

Definition 11.2. The impulse response h of an LTI system is h(t) = (Tδ)(t).

Theorem 11.3. For an LTI system we have

(Tx)(t) = (h?x)(t) =


∞∫
−∞

h(t−u)x(u) du =
∞∫
−∞

h(u)x(t−u) du in continuous time,

∞∑
k=−∞

h(t−k)x(k) =
∞∑

k=−∞
h(k)x(t−k) in discrete time.

Proof. (Discrete time.) As x(t) =
∑∞

k=−∞ x(k) δ(t−k) we have

(Tx)(t) = (T
( ∞∑
k=−∞

x(k) δ(·−k)
)
)(t) =

∞∑
k=−∞

x(k) (Tδ(·−k))(t) =
∞∑

k=−∞
x(k) (Tδ)(t−k). �

Theorem 11.4. An WSS insignal X(t) to an LTI system is jointly WSS with the

outsignal Y (t) and

µY = h?µX , RXY (τ) = (h?RXX)(τ) and RY Y (τ) = ((h(−·))?h?RXX)(τ).

Proof. (Continuous time.)

µY (t) = E(h ? X(t)) = E
( ∞∫
−∞

h(u)X(t−u) du
)

=
∞∫
−∞

h(u)E(X(t−u)) du =
∞∫
−∞

h(u)µX du,

RXY (t, t+ τ) = E
(
X(t)

∞∫
−∞

h(u)X(t+τ−u) du
)

=
∞∫
−∞

h(u)E(X(t)X(t+τ−u)) du = (h ? RXX)(τ),

RY Y (t, t+ τ) = E
[( ∞∫
−∞

h(u)X(t−u) du
)( ∞∫
−∞

h(v)X(t+τ−v) dv
)]

=
∞∫
−∞

∞∫
−∞

h(u)h(v)RXX(τ+u−v) dudv = ((h(−·)) ? h ? RXX)(τ). �

Definition 11.5. The transfer function H of an LTI system is H(f) = (Fh)(f).

Corollary 11.6. SXY (f) = H(f)SXX(f), SY X(f) = H(f)SXX(f) and SY Y (f)

= |H(f)|2SXX(f).

Proof. The first identity follows using that (F(g ? h))(f) = (Fg)(f) (Fh)(f). As

(F(g(−·)))(f) = (Fg)(f) for realvalued functions g the second identity follows using

that RY X(τ) = RXY (−τ) so SY X(f) = (FRXY )(f) and the third identity similary. �
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Example 10.3. (Continued) Viewing the AR(1)-process Y [k] = a Y [k−1] +

b e[k] as an LTI system with input e and output Y we have

H(f) (Fe)(f) = (FY )(f) =
∞∑

k=−∞
e−j2πkfY [k] = a

∞∑
k=−∞

e−j2πkfY [k−1] + b (Fe)(f)

= a e−j2πkf (FY )(f) + b (Fe)(f) = a e−j2πkfH(f) (Fe)(f) + b (Fe)(f)

so that H(f) = b/(1− a e−j2πkf ). From this we recover our earlier finding

SY Y (f) = |H(f)|2See(f) = |H(f)|2 = b2/|1− a e−j2πf |2.

The matched filter

In a digital communication system 1 is represented by sending a deterministic signal

s(t) while 0 i represented by sending 0. The signal is sent on a noisy channel with

additive white noise N(t) so that the received signal is X(t) = s(t) + N(t) if 1 is sent

and X(t) = N(t) if 0 is sent.

To obtain best signal detection (of whether 1 or 0 is sent) the received signal is

processed through an LTI system with impulse response h designed to maximize the

signal to noise ratio (SNR) E((h ? s)(t)2)/E((h ? N)(t)2) at a certain detection time t.

Using Property 4 of PSD together with the Planecherel identity
∫
|(Fg)(f)|2 df =∫

|g(x)|2 dx and Cauchy-Schwarz inequality for integrals (
∫
g(x)h(x) dx)2 ≤ (

∫
g(x)2 dx)

(
∫
h(x)2 dx) we see that in continuous time

SNR =
(h ? s)(t)2∫∞

−∞ |H(f)|2(N0/2) df
=

2

N0

[
∫∞
−∞ h(u)s(t−u) du]2∫∞
−∞ h(u)2 du

≤ 2

N0

∞∫
−∞

s(t−u)2 du

where the right-hand side is independent of h. As we have equality above for h(u) =

s(t−u) this is the h we seek. We have proved the following theorem in continuous time:

Theorem 11.7. (Matched Filter) h(u) = s(t−u).

The Wiener filter

A WSS process X(t) with PSD SXX(f) is sent on a noisy channel where an independent

zero-mean WSS noise N(t) with PSD SNN (f) is added.

The recived signal Y (t) = X(t) + N(t) is processed through an LTI system with

impulse response h and transfer function H designed to minimize the mean-square

distance E((X(t)−(h?Y )(t))2) between the sent signal and the processed recived signal.

6



Using Properties 4 and 5 of spectraldensities we see that in continuous time

E(((h?Y )(t)−X(t))2)

= E
(
((h?X)(t)+ (h?N)(t)−X(t))2

)
= E

(
(h?X)(t)2 +(h?N)(t) +X(t)2 +2(h?X)(t)(h?N)(t)−2(h?X)(t)X(t)−2(h?N)(t)X(t)

)
=
∞∫
−∞

(
|H(f)|2SXX(f) + |H(f)|2SNN (f) + SXX(f)− 2H(f)SXX(f)

)
df.

Minima is for the derivative of the integrand 2H(f) (SXX(f) + SNN (f)) − 2SXX(f)

wrt. H(f) equals zero. We have proved the following theorem in continuous time:

Theorem 11.8. (Wiener Filter) H(f) = SXX(f)/(SXX(f) + SNN (f)).

Exercise 1. In the derivation we replaced |H(f)|2 with H(f)2 - justify this step.
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