
MVE136 Random Signals Analysis

Written exam Monday 19 August 2019 2-6 pm

Teacher: Patrik Albin. Jour: Juan Inda, telephone 772 5325.

Aids: Beta or 2 sheets (=4 pages) of hand-written notes (computer print-outs and/or

xerox-copies are not allowed), but not both these aids.

Grades: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively.

Motivations: All answers/solutions must be motivated. Good luck!

Task 1. Find the probability Pr(X(1)+X(2)+X(3) > 6) for a continuous time WSS

Gaussian process X(t) with mean µX = 1 and autocorrelation function RXX(τ) =

e−|τ | + 1 for τ ∈ R. (5 poäng)

Task 2. Find the probability Pr(X(1) +X(2) > 3) for a Poisson process with rate

1. (5 poäng)

Task 3. Give an example of a WSS random process that is not strict sense station-

ary. (5 poäng)

Task 4. Calculate E(X[n]X[n+1]) for non-negative integers n when {X[n], n ≥ 0}

is a Markov chain with state space (/possible values) S, initial distribution π(0) and

transition probability matrix P , respectively, given by

S = {0, 1}, π(0) = [1/2 1/2] and P =

[

1/2 1/2

1/2 1/2

]

. (5 points)

Task 5. The sum X(t) = S(t)+N(t) of a continuous time signal process S(t) with PSD

SSS(f) = 2/(2 + (2πf)2) and an independent (of S(t)) continuous time noise process

N(t) with PSD SNN (f) = 1 is input to an LTI filter. Determine the impulse response of

the filter that produces an output Y (t) from the filter that minimizes the mean-square

signal-recovering error E[(S(t)−Y (t))2]. Also, find the PSD of the output Y (t) when

the filter has this impulse response. (5 points)

Task 6. Prediction is an important tool in many contexts, including decision theory,

planning and control. Suppose that we wish to predict x[n+1] given x[n] and x[n− 1],

where x[n] is an MA(2)-process

x[n] = e[n] + 0.5 e[n−1] + 0.2 e[n−2] for n∈N.
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The input noise e[n] is assumed to be a wide sense stationary zero mean white noise

process with variance E[e[n]2] = 1 and autocorrelation function re[k] = E[e[n]e[n+k]] =

0 for k 6= 0. We will further assume that we seek a linear estimator

x̂[n+ 1] = h0 x[n] + h1 x[n−1].

Find the coefficients h0 and h1 that minimize E[(x[n+1]− x̂[n+1])2]. (5 poäng)
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MVE136 Random Signals Analysis

Solutions to written exam 19 August 2019

Task 1. As X(1)+X(2)+X(3) is N(m,σ2)-distributed we have Pr(X(1)+X(2)+X(3)>

6) = Pr(N(m,σ2)> 6) = 1−Φ((6−m)/σ), where m = E[X(1)+X(2)+X(3)] = 3 and

σ2 = Var(X(1)+X(2)+X(3)) = 3CXX(0) + 4CXX(1) + 2CXX(2) = 3 + 4 e−1 + 2 e−2

[using that CXX(τ) = RXX(τ)− µ2
X

= e−|τ |].

Task 2. As X(1) +X(2) = (X(2)−X(1)) + 2X(1) where X(2)−X(1) and X(1) are

independent Po(1)-distributed we have Pr(X(1) +X(2) > 3) = Pr((X(2)−X(1)) +

2X(1) > 3) = Pr(X(1)≥ 2) + Pr(X(1) = 1, X(2)−X(1)> 1) + Pr(X(1) = 0, X(2)−

X(1)> 3) = (1− e−1− e−1) + e−1 (1− e−1− e−1) + e−1 (1− e−1− e−1− 1
2e

−1− 1
6e

−1).

Task 3. For example, the process {X(t)}t∈Z made up of independent random variables

that are N(0, 1)-distributed for t even and that have a discrete Rademacher distribution

with PMF PX(t)(−1) = PX(t)(1) = 1/2 for t odd, as this process is zero-mean with

autocorrelation function RXX(τ) = δ(τ), but clearly is not strict sense stationary.

Task 4. As the only possible values of the random variable X[n]X[n+1] are 0 and

1, we have E(X[n]X[n+1]) = 0 · P (X[n]X[n+1] = 0) + 1 · P (X[n]X[n+1] = 1) =

P (X[n]X[n+1] = 1) = P (X[n] = 1, X[n+1] = 1) = π(n)1P11 = π(n)1(1/2). Noting that

π(0) = π is in fact a stationary distribution for the chain we have π(n) = π(0) = π,

so that π(n)1 = π(0)1 = 1/2 and E(X[n]X[n+1]) = 1/4. (The latter result is in fact

also more or less obviously true already from the beginning without calculations from

symmetry considerations ... .)

Task 5. We are looking for the impulse response of the Wiener filter with transfer funct-

ion H(f) = SSS(f)/(SSS(f)+SNN (f)) = 2/(4+ (2πf)2) so that the impulse response

(see Table E.1 in the book of Miller and Childers) is h(t) = 2 e−2|t|. Further, we have

SY Y (f) = |H(f)|2SXX(f) =
SSS(f)

2

SSS(f)+SNN (f)
=

4

(4+(2πf)2) (2+(2πf)2)
.

Task 6. Let us first formulate this problem in terms of our standard notation for

Wiener filtering: Our quantity of interest is usually denoted d[n] whereas our estimator

is denoted d̂[n]. In this problem, we have d[n] = x[n+1] and d̂[n] = h0 x[n] + h1 x[n−1].

In terms of this notation, the Wiener-Hopf equations can be expressed as
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{

h0 rx[0] + h1 rx[1] = rdx[0]

h0 rx[1] + h1 rx[0] = rdx[1]
,

which can also be written on matrix form




rx[0] rx[1]

rx[1] rx[0]









h0

h1



 =





rdx[0]

rdx[1]



 . (1)

For this problem, we note that rdx[0] = E[d[n]x[n]] = E[x[n+1]x[n]] = rx[1] and

rdx[1] = E[d[n]x[n−1]] = E[x[n+1]x[n−1]] = rx[2] so that it is therefore sufficient to

compute rx[k] for k = 0, 1 and 2 before we can solve for h0 and h1.

Let us try to derive a general expression for rx[k]: Given our expression for x[n] it

holds that

rx[k] = E[x[n]x[n−k]]

= E
[

(e[n]+0.5 e[n−1]+0.2 e[n−2]) (e[n−k]+0.5 e[n−1−k]+0.2 e[n−2−k])
]

=







































0 if |k|> 2

0.2 if |k|= 2

0.5+0.2 ·0.5 = 0.51 if |k|= 1

1+0.5+0.2 = 1.7 if k= 0

. (2)

By combining (1) with (2), we obtain the matrix equation





1.7 0.51

0.51 1.7









h0

h1



 =





0.51

0.2



 ,

from which we can find the solutions h0 ≈ 0.29 and h1 ≈ 0.03.
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