MVE136 Random Signals Analysis

Written exam Friday 1 November 8.30–12.30

TEACHER: Patrik Albin 0317723512. JOUR: Johan Tykesson, telephone 0703182096.

AIDS: Beta $\underline{\text{or}} 2$ sheets (=4 pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Two jointly WSS jointly Gaussian continuous time random processes X(t)and Y(t), $t \in \mathbb{R}$, have common mean $\mu_X = \mu_Y = 0$, common autocorrelation function $R_{XX}(\tau) = R_{YY}(\tau) = e^{-|\tau|}$ and crosscorrelation function $R_{XY}(\tau) = \frac{1}{2}e^{-|\tau|}$ for $\tau \in \mathbb{R}$. Calculate P(X(1) + Y(2) > 3). [HINT: For X(t) and Y(t) jointly Gaussian each linear combination $\sum_{i=1}^{m} a_i X(s_i) + \sum_{j=1}^{n} b_j Y(t_j)$ is normal distributed.] **(5 points)**

Task 2. Let X(t), $t \ge 0$, be a Poisson process with arrival rate (intensity) 1. Calculate $P(X(1) \ge 1, X(2) \le 2, X(3) \ge 1)$. (5 points)

Task 3. A Markov chain X(n), n = 0, 1, 2, ..., has states (possible values) 0 and 1 with starting distribution $\pi(0) = (1 \ 0)$ and transition matrix $P = \begin{pmatrix} 1/3 & 2/3 \\ 2/3 & 1/3 \end{pmatrix}$. Calculate $R_{XX}(2,4) = E(X(2)X(4))$. (5 points)

Task 4. Find a WSS continuous time random process X(t), $t \in \mathbb{R}$, that has autocorrelation function $R_{XX}(\tau) = 1$ for $\tau \in \mathbb{R}$. Also calculate the PSD $S_{XX}(f)$. (5 points)

Task 5. In a digital communication system 1 is represented by sending an analogue continuous time deterministic signal $s(t), t \in \mathbb{R}$, while 0 is represented by sending 0. The signal is sent on a noisy channel with a zero-mean Gaussian WSS continuous time white noise process $N(t), t \in \mathbb{R}$, having $R_{NN}(\tau) = (N_0/2) \delta(\tau)$ and $S_{NN}(f) = N_0/2$. Hence the received signal is X(t) = s(t) + N(t) if 1 is sent and X(t) = N(t) if 0 is sent.

To obtain best signal detection at detection time t_0 the recived signal X(t) is processed through a matched filter LTI system with impulse response $h(u) = s(t_0 - u)$ for $u \in \mathbb{R}$ designed to maximize the signal to noise ratio

$$SNR = \frac{(h \star s)(t_0)^2}{Var((h \star N)(t_0))} = \frac{(h \star s)(t_0)^2}{E((h \star N)(t_0)^2)} = \frac{(\int_{-\infty}^{\infty} s(t_0 - u)^2 \, du)^2}{\int_{-\infty}^{\infty} |H(f)|^2 S_{NN}(f) \, df}$$
$$= \frac{2}{N_0} \frac{(\int_{-\infty}^{\infty} s(u)^2 \, du)^2}{\int_{-\infty}^{\infty} |H(f)|^2 \, df} = \frac{2}{N_0} \frac{(\int_{-\infty}^{\infty} s(u)^2 \, du)^2}{\int_{-\infty}^{\infty} h(u)^2 \, du} = \frac{2}{N_0} \int_{-\infty}^{\infty} s(u)^2 \, du$$

At detection it is decided that 1 was sent if $(h \star X)(t_0) > \frac{1}{2}(h \star s)(t_0)$ while it is decided that 0 was sent if $(h \star X)(t_0) \leq \frac{1}{2}(h \star s)(t_0)$. Find the probabilities for erroneous detection P(decision 1 when 0 was sent) and P(decision 0 when 1 was sent). [HINT: As $(h \star N)(t_0)$ is normal distributed so is $(h \star X)(t_0)$.] (5 points)

Task 6. Shortly describe Blackman-Tukey's method to improve on PSD estimation.What improvement does it bring and what is a possible drawback?(5 points)

MVE136 Random Signals Analysis

Solutions to written exam 1 November 2019

Task 1. As X(1)+Y(2) is $N(\mu, \sigma^2)$ with $\mu = \mu_X + \mu_Y = 0$ and $\sigma^2 = Var\{X(1)+Y(2)\}$ = $E((X(1)+Y(2))^2) = R_{XX}(0) + 2R_{XY}(1) + R_{YY}(0) = 2 + e^{-1}$ we have $P(X(1)+Y(2) > 3) = 1 - \Phi(\frac{3-\mu}{\sigma}) = 1 - \Phi(\frac{3}{\sqrt{2+e^{-1}}}).$

Task 2. The possible values of (X(1), X(2) - X(1)) are (1,0), (1,1) and (2,0) with probabilities $P(\text{Po}(1) = 1) \cdot P(\text{Po}(1) = 0) = e^{-2}$, $P(\text{Po}(1) = 1) \cdot P(\text{Po}(1) = 1) = e^{-2}$ and $P(\text{Po}(1) = 2) \cdot P(\text{Po}(1) = 0) = \frac{1}{2}e^{-2}$, respectively, so that $P(X(1) \ge 1, X(2) \le 2, X(3) \ge 1) = P(X(1) \ge 1, X(2) \le 2) = \frac{5}{2}e^{-2}$.

Task 3. As $P^{(2)} = P^2 = \begin{pmatrix} 5/9 & 4/9 \\ 4/9 & 5/9 \end{pmatrix}$ we have $E(X(2)X(4)) = 1 \cdot 1 \cdot P(X(2) = 1, X(4) = 1)$ = $(\pi(2))_1 (P^{(2)})_{11} = (\pi(0) P^2)_1 (P^2)_{11} = \frac{4}{9} \cdot \frac{5}{9} = \frac{20}{81} \approx \frac{1}{4}.$

Task 4. Let Y be an N(0, 1)-distributed random variable and set X(t) = Y for $t \in \mathbb{R}$. Further, $S_{XX}(f) = \delta(f)$ since $(\mathcal{F}^{-1}\delta)(\tau) = (\mathcal{F}\delta)(\tau) = 1$.

Task 5. Symmetry gives $P(\text{decision 0 when 1 sent}) = P(\text{decision 1 when 0 sent}) = P((h \star N)(t_0) > \frac{1}{2}(h \star s)(t_0)) = P(N(0, \text{Var}((h \star N)(t_0))) > \frac{1}{2}(h \star s)(t_0)) = 1 - \Phi(\frac{1}{2}\sqrt{\text{SNR}}).$

Task 6. See Tomas McKelvey's lecture slides.