MVE136 Random Signals Analysis

Written exam Friday 1 November 8.30-12.30

Teacher: Patrik Albin 031 7723512. Jour: Johan Tykesson, telephone 0703182096.
Aids: Beta or 2 sheets ($=4$ pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Two jointly WSS jointly Gaussian continuous time random processes $X(t)$ and $Y(t), t \in \mathbb{R}$, have common mean $\mu_{X}=\mu_{Y}=0$, common autocorrelation function $R_{X X}(\tau)=R_{Y Y}(\tau)=\mathrm{e}^{-|\tau|}$ and crosscorrelation function $R_{X Y}(\tau)=\frac{1}{2} \mathrm{e}^{-|\tau|}$ for $\tau \in \mathbb{R}$. Calculate $P(X(1)+Y(2)>3)$. [Hint: For $X(t)$ and $Y(t)$ jointly Gaussian each linear combination $\sum_{i=1}^{m} a_{i} X\left(s_{i}\right)+\sum_{j=1}^{n} b_{j} Y\left(t_{j}\right)$ is normal distributed.] (5 points)

Task 2. Let $X(t), t \geq 0$, be a Poisson process with arrival rate (intensity) 1. Calculate $P(X(1) \geq 1, X(2) \leq 2, X(3) \geq 1) . \quad$ (5 points)

Task 3. A Markov chain $X(n), n=0,1,2, \ldots$, has states (possible values) 0 and 1 with starting distribution $\pi(0)=\left(\begin{array}{ll}1 & 0\end{array}\right)$ and transition matrix $P=\left(\begin{array}{ll}1 / 3 & 2 / 3 \\ 2 / 3 & 1 / 3\end{array}\right)$. Calculate $R_{X X}(2,4)=E(X(2) X(4)) . \quad$ (5 points)

Task 4. Find a WSS continuous time random process $X(t), t \in \mathbb{R}$, that has autocorrelation function $R_{X X}(\tau)=1$ for $\tau \in \mathbb{R}$. Also calculate the $\operatorname{PSD} S_{X X}(f)$. (5 points)

Task 5. In a digital communication system 1 is represented by sending an analogue continuous time deterministic signal $s(t), t \in \mathbb{R}$, while 0 i represented by sending 0 . The signal is sent on a noisy channel with a zero-mean Gaussian WSS continuous time white noise process $N(t), t \in \mathbb{R}$, having $R_{N N}(\tau)=\left(N_{0} / 2\right) \delta(\tau)$ and $S_{N N}(f)=N_{0} / 2$. Hence the recived signal is $X(t)=s(t)+N(t)$ if 1 is sent and $X(t)=N(t)$ if 0 is sent.

To obtain best signal detection at detection time t_{0} the recived signal $X(t)$ is processed through a matched filter LTI system with impulse response $h(u)=s\left(t_{0}-u\right)$ for $u \in \mathbb{R}$ designed to maximize the signal to noise ratio

$$
\begin{aligned}
\operatorname{SNR} & =\frac{(h \star s)\left(t_{0}\right)^{2}}{\operatorname{Var}\left((h \star N)\left(t_{0}\right)\right)}=\frac{(h \star s)\left(t_{0}\right)^{2}}{E\left((h \star N)\left(t_{0}\right)^{2}\right)}=\frac{\left(\int_{-\infty}^{\infty} s\left(t_{0}-u\right)^{2} d u\right)^{2}}{\int_{-\infty}^{\infty}|H(f)|^{2} S_{N N}(f) d f} \\
& =\frac{2}{N_{0}} \frac{\left(\int_{-\infty}^{\infty} s(u)^{2} d u\right)^{2}}{\int_{-\infty}^{\infty}|H(f)|^{2} d f}=\frac{2}{N_{0}} \frac{\left(\int_{-\infty}^{\infty} s(u)^{2} d u\right)^{2}}{\int_{-\infty}^{\infty} h(u)^{2} d u}=\frac{2}{N_{0}} \int_{-\infty}^{\infty} s(u)^{2} d u
\end{aligned}
$$

At detection it is decided that 1 was sent if $(h \star X)\left(t_{0}\right)>\frac{1}{2}(h \star s)\left(t_{0}\right)$ while it is decided that 0 was sent if $(h \star X)\left(t_{0}\right) \leq \frac{1}{2}(h \star s)\left(t_{0}\right)$. Find the probabilities for erroneous detection P (decision 1 when 0 was sent) and P (decision 0 when 1 was sent). [Hint: As $(h \star N)\left(t_{0}\right)$ is normal distributed so is $(h \star X)\left(t_{0}\right)$.]

Task 6. Shortly describe Blackman-Tukey's method to improve on PSD estimation. What improvment does it bring and what is a possible drawback?

MVE136 Random Signals Analysis

Solutions to written exam 1 November 2019

Task 1. As $X(1)+Y(2)$ is $\mathrm{N}\left(\mu, \sigma^{2}\right)$ with $\mu=\mu_{X}+\mu_{Y}=0$ and $\sigma^{2}=\operatorname{Var}\{X(1)+Y(2)\}$ $=E\left((X(1)+Y(2))^{2}\right)=R_{X X}(0)+2 R_{X Y}(1)+R_{Y Y}(0)=2+\mathrm{e}^{-1}$ we have $P(X(1)+Y(2)$ $>3)=1-\Phi\left(\frac{3-\mu}{\sigma}\right)=1-\Phi\left(\frac{3}{\sqrt{2+\mathrm{e}^{-1}}}\right)$.

Task 2. The possible values of $(X(1), X(2)-X(1))$ are $(1,0),(1,1)$ and $(2,0)$ with probabilities $P(\operatorname{Po}(1)=1) \cdot P(\operatorname{Po}(1)=0)=\mathrm{e}^{-2}, P(\operatorname{Po}(1)=1) \cdot P(\operatorname{Po}(1)=1)=\mathrm{e}^{-2}$ and $P(\operatorname{Po}(1)=2) \cdot P(\operatorname{Po}(1)=0)=\frac{1}{2} \mathrm{e}^{-2}$, respectively, so that $P(X(1) \geq 1, X(2) \leq 2, X(3) \geq$ 1) $=P(X(1) \geq 1, X(2) \leq 2)=\frac{5}{2} \mathrm{e}^{-2}$.

Task 3. As $P^{(2)}=P^{2}=\left(\begin{array}{cc}5 / 9 & 4 / 9 \\ 4 / 9 & 5 / 9\end{array}\right)$ we have $E(X(2) X(4))=1 \cdot 1 \cdot P(X(2)=1, X(4)=1)$ $=(\pi(2))_{1}\left(P^{(2)}\right)_{11}=\left(\pi(0) P^{2}\right)_{1}\left(P^{2}\right)_{11}=\frac{4}{9} \cdot \frac{5}{9}=\frac{20}{81} \approx \frac{1}{4}$.

Task 4. Let Y be an $\mathrm{N}(0,1)$-distributed random variable and set $X(t)=Y$ for $t \in \mathbb{R}$. Further, $S_{X X}(f)=\delta(f)$ since $\left(\mathcal{F}^{-1} \delta\right)(\tau)=(\mathcal{F} \delta)(\tau)=1$.

Task 5. Symmetry gives $P($ decision 0 when 1 sent $)=P($ decision 1 when 0 sent $)=$ $P\left((h \star N)\left(t_{0}\right)>\frac{1}{2}(h \star s)\left(t_{0}\right)\right)=P\left(\mathrm{~N}\left(0, \operatorname{Var}\left((h \star N)\left(t_{0}\right)\right)\right)>\frac{1}{2}(h \star s)\left(t_{0}\right)\right)=1-\Phi\left(\frac{1}{2} \sqrt{\mathrm{SNR}}\right)$.

Task 6. See Tomas McKelvey's lecture slides.

