MVE136 Random Signals Analysis

Written exam Tuesday 7 January 20202 PM-6 PM

Teacher: Patrik Albin. Jour: Olof Elias, telephone 0317726457.
AIDS: Beta or 2 sheets ($=4$ pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed), but not both these aids.
Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Calculate $\operatorname{Pr}(X(1)=Y(2))$ when $X(t)$ and $Y(t), t \in \mathbb{R}$, are two independent zero-mean WSS Gaussian processes with PSD's $S_{X X}(f)=S_{Y Y}(f)=\mathrm{e}^{-|f|}$. (5 points)

Task 2. (a) Show that the characteristic function $\Phi_{X}(\omega)=E\left(\mathrm{e}^{j \omega X}\right)$ for a Poisson distributed random variable with mean $\lambda>0$ is $\Phi_{X}(\omega)=\mathrm{e}^{\lambda\left(\mathrm{e}^{j \omega}-1\right)}$. (2.5 points)
(b) Show that the sum of two independent Poisson distributed random variables is a Poisson distributed random variable. (2.5 points)

Task 3. Let $X(n), n=0,1,2, \ldots$, be a Markov chain with possible values (/states) 0 and 1 and transition matrix $P=\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$. Find $\operatorname{Pr}(X(0)=X(2)=\ldots=X(2 n)=1)$ for $n=0,1,2, \ldots$ when $X(0)$ has the stationary distribution. (5 points)

Task 4. Show by an example that two random processes $X(t)$ and $Y(t)$ can have common mean functions $\mu_{X}(t)=\mu_{Y}(t)$ and autocorrelation functions $R_{X X}(s, t)=R_{Y Y}(s, t)$ but still differ probabilistically [so that, e.g., $\left.F_{X(t)}(z) \neq F_{Y(t)}(z)\right]$. (5 points)

Task 5. A WSS process $X(t)$ with PSD $S_{X X}(f)$ is sent on a noisy channel where an independent zero-mean WSS noise $N(t)$ with $\operatorname{PSD} S_{N N}(f)$ is added. The recived signal $Y(t)=X(t)+N(t)$ is processed through a Wiener filter LTI system with transfer function $H(f)=S_{X X}(f) /\left(S_{X X}(f)+S_{N N}(f)\right)$ and outsignal $Z(t)$ that minimizes the mean-square distance $D=E\left((X(t)-Z(t))^{2}\right)$ between the sent signal and the processed recived signal. Express D in terms of $S_{X X}(f)$ and $S_{N N}(f)$. (5 points)

Task 6. Explain how the Yule Walker equations for $\operatorname{AR}(p)$ processes are derived and what they can be used for. (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 7 January 2020

Task 1. We have $\operatorname{Pr}(X(1)=Y(2))=\operatorname{Pr}(X(1)-Y(2)=0)=\operatorname{Pr}\left(\mathrm{N}\left(\mu, \sigma^{2}\right)=0\right)=0$ as $\mu=E(X(1))-E(Y(2))=0$ and $\sigma^{2}=E\left((X(1)-Y(2))^{2}\right)=E\left(X(1)^{2}\right)+E\left(Y(2)^{2}\right)=$ $2 \int_{-\infty}^{\infty} \mathrm{e}^{-|f|} d f>0$.

Task 2. (a) $E\left(\mathrm{e}^{j \omega X}\right)=\sum_{k=0}^{\infty} \mathrm{e}^{j \omega k} \frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda}=\mathrm{e}^{\mathrm{e}^{j \omega} \lambda} \mathrm{e}^{-\lambda}$.
(b) We have $\Phi_{X+Y}(\omega)=E\left(\mathrm{e}^{j \omega(X+Y)}\right)=E\left(\mathrm{e}^{j \omega X}\right) E\left(\mathrm{e}^{j \omega Y}\right)=\mathrm{e}^{\lambda X\left(\mathrm{e}^{j \omega}-1\right)} \mathrm{e}^{\lambda_{Y}\left(\mathrm{e}^{j \omega}-1\right)}=$ $\mathrm{e}^{\left(\lambda_{X}+\lambda_{Y}\right)\left(\mathrm{e}^{j \omega}-1\right)}$ so that $X+Y$ is Poisson distributed with mean $\lambda_{X}+\lambda_{Y}$.

Task 3. As $P^{2}=P$ and $\pi=(1 / 21 / 2)$ we have $\operatorname{Pr}(X(0)=\ldots=X(2 n)=1)=$ $(\pi)_{1}\left(\left(P^{2}\right)_{11}\right)^{n}=2^{-(n+1)}$.

Task 4. Take $X(t)=\xi$ for a single $\mathrm{N}(0,1)$-distributed random variable and $Y(t)=\eta$ for a random sign variable $\operatorname{Pr}(\eta=1)=\operatorname{Pr}(\eta=-1)$. Then $\mu_{X}(t)=\mu_{Y}(t)=0$ and $R_{X X}(s, t)=R_{Y Y}(s, t)=1$ while clearly $F_{X(t)}(z)=\Phi(z) \neq F_{\eta}(z)=F_{Y(t)}(z)$.

Task 5. From the derivation of the Wiener filter we have

$$
\begin{aligned}
D & =\int_{-\infty}^{\infty}\left(|H(f)|^{2} S_{X X}(f)+|H(f)|^{2} S_{N N}(f)+S_{X X}(f)-2 H(f) S_{X X}(f)\right) d f \\
& =\int_{-\infty}^{\infty} S_{X X}(f) S_{N N}(f) /\left(S_{X X}(f)+S_{N N}(f)\right) d f
\end{aligned}
$$

Task 6. See Tomas McKelvey's lecture notes.

