## MVE136 Random Signals Analysis

## Written home exam Monday 17 August 20202 PM-6 PM

Teacher and Examiner: Patrik Albin 0317723512 palbin@chalmers.se.
Aids: All aids are permitted. (See the Canvas course "MVE136 Re-Exam MVE136" with instructions for this reexam for clarifications.)

GRADES: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Calculate $\operatorname{Pr}(X(1) Y(2)>0)$ when $X(t)$ and $Y(t), t \in \mathbb{R}$, are independent zeromean WSS Gaussian processes with PSD's $S_{X X}(f)=S_{Y Y}(f)=\mathrm{e}^{-|f|}$. (5 points)

Task 2. Let $X(t)$ and $Y(t), t \geq 0$, be independent Poission processes with intensity (/rate) 1. Find $\operatorname{Pr}(X(1)=Y(2))$. (5 points)

Task 3. Let $X(n), n=0,1,2, \ldots$, be a Markov chain with possible values 0 and 1, transition matrix $P=\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$ and starting distribution $\pi(0)=\left(\begin{array}{ll}1 & 0\end{array}\right)$. Find the expected value $E(T)$ of the random time

$$
T=\min \{n>0: X(m)=1 \text { for some } 0<m<n \text { and } X(n)=0\}
$$

it takes for the chain to make a journey from 0 to 1 and back to 0 . [Hint: A geometric discrete random variable $\xi$ with $\operatorname{PMF} \operatorname{Pr}(\xi=k)=p(1-p)^{k-1}$ for $k=1,2, \ldots$ has expected value $E(\xi)=1 / p$.] (5 points)

Task 4. Show by an example that two WSS random processes $X(t)$ and $Y(t)$ need not be jointly WSS, i.e., that $R_{X Y}(t, t+\tau)$ may depend on $t$. (5 points)

Task 5. A WSS process $X(t)$ with PSD $S_{X X}(f)$ is sent on a noisy channel where an independent zero-mean WSS noise process $N(t)$ with $\operatorname{PSD} S_{N N}(f)$ is added. The received signal $Y(t)=X(t)+N(t)$ is processed through a Wiener filter LTI system with transfer function $H(f)=S_{X X}(f) /\left(S_{X X}(f)+S_{N N}(f)\right)$ and outsignal $Z(t)$ that minimizes the mean-square distance $D=E\left((X(t)-Z(t))^{2}\right)$ between the sent signal and the processed recived signal. It is possible to have $D=0$ : What exactly is required for this to happen? (5 points)

Task 6. How can one do parametric spectral estimation for an $A R(1)$ process?

## MVE136 Random Signals Analysis

## Solutions to written exam 17 August 2020

Task 1. $\operatorname{Pr}(X(1) Y(2)>0)=\operatorname{Pr}(X(1)>0) \operatorname{Pr}(Y(2)>0)+\operatorname{Pr}(X(1)<0) \operatorname{Pr}(Y(2)<0)$ $=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}$ since $X(1)$ and $Y(2)$ are independent zero-mean normaldistributed with variance $\int_{-\infty}^{\infty} \mathrm{e}^{-|f|} d f>0$.
Task 2. $\operatorname{Pr}(X(1)=Y(2))=\sum_{k=0}^{\infty} \operatorname{Pr}(X(1)=k) \operatorname{Pr}(Y(2)=k)=\sum_{k=0}^{\infty} \frac{1^{k}!}{k!} \mathrm{e}^{-1} \frac{2^{k}}{k!} \mathrm{e}^{-2}=$ $\sum_{k=0}^{\infty} \frac{2^{k}}{(k!!\cdot(k!)} \mathrm{e}^{-3}$.

Task 3. $E(T)=1 /(1 / 2)+1 /(1 / 2)=4$.
Task 4. For $Y(t)=X(-t)$ we have $R_{X Y}(t, t+\tau)=R_{X X}(2 t+\tau)$ which depends on $t$ unless $R_{X X}(\tau)$ is constant.

Task 5. That $S_{X X}(f)=0$ when $S_{N N}(f) \neq 0$.
Task 6. See, e.g., Patrik Albin's lecture notes.

