MVE136 Random Signals Analysis

Written home exam Monday 17 August 2020 2 PM-6 PM

TEACHER AND EXAMINER: Patrik Albin 0317723512 palbin@chalmers.se.

AIDS: All aids are permitted. (See the Canvas course "MVE136 Re-Exam MVE136" with instructions for this reexam for clarifications.)

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Calculate Pr(X(1)Y(2) > 0) when X(t) and Y(t), $t \in \mathbb{R}$, are independent zeromean WSS Gaussian processes with PSD's $S_{XX}(f) = S_{YY}(f) = e^{-|f|}$. (5 points)

Task 2. Let X(t) and Y(t), $t \ge 0$, be independent Poission processes with intensity (/rate) 1. Find Pr(X(1) = Y(2)). (5 points)

Task 3. Let X(n), n = 0, 1, 2, ..., be a Markov chain with possible values 0 and 1, transition matrix $P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ and starting distribution $\pi(0) = (1 \ 0)$. Find the expected value E(T) of the random time

$$T = \min\{n > 0 : X(m) = 1 \text{ for some } 0 < m < n \text{ and } X(n) = 0\}$$

it takes for the chain to make a journey from 0 to 1 and back to 0. [HINT: A geometric discrete random variable ξ with PMF $Pr(\xi = k) = p(1-p)^{k-1}$ for k = 1, 2, ... has expected value $E(\xi) = 1/p$.] (5 points)

Task 4. Show by an example that two WSS random processes X(t) and Y(t) need not be jointly WSS, i.e., that $R_{XY}(t, t+\tau)$ may depend on t. (5 points)

Task 5. A WSS process X(t) with PSD $S_{XX}(f)$ is sent on a noisy channel where an independent zero-mean WSS noise process N(t) with PSD $S_{NN}(f)$ is added. The received signal Y(t) = X(t) + N(t) is processed through a Wiener filter LTI system with transfer function $H(f) = S_{XX}(f)/(S_{XX}(f) + S_{NN}(f))$ and outsignal Z(t) that minimizes the mean-square distance $D = E((X(t) - Z(t))^2)$ between the sent signal and the processed recived signal. It is possible to have D = 0: What exactly is required for this to happen? (5 points)

Task 6. How can one do parametric spectral estimation for an AR(1) process?

(5 points)

MVE136 Random Signals Analysis

Solutions to written exam 17 August 2020

Task 1. $\Pr(X(1)Y(2) > 0) = \Pr(X(1) > 0) \Pr(Y(2) > 0) + \Pr(X(1) < 0) \Pr(Y(2) < 0)$ = $\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$ since X(1) and Y(2) are independent zero-mean normal distributed with variance $\int_{-\infty}^{\infty} e^{-|f|} df > 0$.

Task 2. $\Pr(X(1) = Y(2)) = \sum_{k=0}^{\infty} \Pr(X(1) = k) \Pr(Y(2) = k) = \sum_{k=0}^{\infty} \frac{1^k}{k!} e^{-1} \frac{2^k}{k!} e^{-2} = \sum_{k=0}^{\infty} \frac{2^k}{(k!) \cdot (k!)} e^{-3}.$

Task 3. E(T) = 1/(1/2) + 1/(1/2) = 4.

Task 4. For Y(t) = X(-t) we have $R_{XY}(t, t + \tau) = R_{XX}(2t + \tau)$ which depends on t unless $R_{XX}(\tau)$ is constant.

Task 5. That $S_{XX}(f) = 0$ when $S_{NN}(f) \neq 0$.

Task 6. See, e.g., Patrik Albin's lecture notes.