## Solutions to Chapter 11 Exercises

## Problem 11.15

$$
\begin{aligned}
Y(t)= & a\left(S^{2}(t)+N^{2}(t)+2 S(t) N(t)\right) \\
E[Y(t)]= & a E\left[S^{2}(t)\right]+a E\left[N^{2}(t)\right]+2 a E[S(t) N(t)] \\
= & a\left(\sigma_{S}^{2}+\sigma_{N}^{2}\right) . \\
R_{Y, Y}(\tau)= & a^{2} E\left[\left(S^{2}(t)+N^{2}(t)+2 S(t) N(t)\right)\right. \\
& \left.\left(S^{2}(t+\tau)+N^{2}(t+\tau)+2 S(t+\tau) N(t+\tau)\right)\right] \\
= & a^{2} E\left[S^{2}(t) S^{2}(t+\tau)\right]+a^{2} E\left[N^{2}(t) N^{2}(t+\tau)\right] \\
+ & 4 a^{2} E[S(t) S(t+\tau) N(t) N(t+\tau)]+a^{2} E\left[S^{2}(t) N^{2}(t+\tau)\right] \\
+ & 2 a^{2} E\left[S^{2}(t) S(t+\tau) N(t+\tau)\right]+a^{2} E\left[N^{2}(t) S^{2}(t+\tau)\right] \\
& 2 a^{2} E\left[N^{2}(t) N(t+\tau) S(t+\tau)\right]+2 a^{2} E\left[S(t) S^{2}(t+\tau) N(t)\right] \\
+ & 2 a^{2} E\left[S(t) N(t) N^{2}(t+\tau)\right] \\
= & a^{2}\left[R_{S, S}^{2}(0)+2 R_{S, S}^{2}(\tau)+R_{N, N}^{2}(0)+2 R_{N, N}^{2}(\tau)\right. \\
+ & \left.4 R_{S, S}(\tau) R_{N, N}(\tau)+R_{S, S}(0) R_{N, N}(0)+R_{N, N}(0) R_{S, S}(0)\right] \\
= & a^{2}\left[\left(R_{S, S}(0)+R_{N, N}(0)\right)^{2}+2\left(R_{S, S}(\tau)+R_{N, N}(\tau)\right)^{2}\right] \\
= & a^{2}\left[\left(\sigma_{S}^{2}+\sigma_{N}^{2}\right)^{2}+2\left(R_{S, S}(\tau)+R_{N, N}(\tau)\right)^{2}\right] .
\end{aligned}
$$

In above Calculation we used the following information:

For two Gaussian random process $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ :
$E\left[X^{2}(t) Y^{2}(t+\tau)\right]=R_{X X}[0] R_{Y Y}[0]+2 R_{X Y}^{2}[\tau] \quad$ If X and Y are correlated $E[X(t) Y(t) Y(t+\tau)]=E[X(t)] E[Y(t) Y(t+\tau)] \quad$ If X and Y are not correlated

## Problem 11.16

For the given PSD's,

$$
\begin{aligned}
R_{S, S}(\tau) & =F^{-1}\left[S_{S, S}(f)\right]=\frac{A^{2}}{4}\left(e^{-j 2 \pi f_{c} \tau}+e^{j 2 \pi f_{c} \tau}\right)=\frac{A^{2}}{2} \cos \left(2 \pi f_{c} \tau\right) \\
R_{N, N}(\tau) & =F^{-1}\left[S_{N, N}(f)\right]=\frac{N_{o} B}{2} \operatorname{sinc}(B \tau)\left(e^{-j 2 \pi f_{c} \tau}+e^{j 2 \pi f_{c} \tau}\right) \\
& =N_{o} B \operatorname{sinc}(B \tau) \cos \left(2 \pi f_{c} \tau\right)
\end{aligned}
$$

From these we determine that

$$
\begin{aligned}
\sigma_{S}^{2} & =R_{S, S}(0)=\frac{A^{2}}{2} \\
\sigma_{N}^{2} & =R_{N, N}(0)=N_{o} B
\end{aligned}
$$

The autocorrelation of $Y(t)$ is then

$$
\begin{aligned}
R_{Y, Y}(\tau) & =a^{2}\left[\left(\sigma_{S}^{2}+\sigma_{N}^{2}\right)^{2}+2\left(R_{S, S}(\tau)+R_{N, N}(\tau)\right)^{2}\right] \\
& =a^{2}\left[\left(\frac{A^{2}}{2}+N_{o} B\right)^{2}+2\left(\frac{A^{2}}{2}+N_{o} B \operatorname{sinc}(B \tau)\right)^{2} \cos ^{2}\left(2 \pi f_{c} \tau\right)\right] \\
& =a^{2}\left[\left(\frac{A^{2}}{2}+N_{o} B\right)^{2}\right. \\
& \left.+2\left(\frac{A^{2}}{4}+A^{2} N_{o} B \operatorname{sinc}(B \tau)+\left(N_{o} B\right)^{2} \operatorname{sinc}^{2}(B \tau)\right)\left(1+\cos \left(4 \pi f_{c} \tau\right)\right)\right]
\end{aligned}
$$

Taking FT's, the PSD of $Y(t)$ is then

$$
S_{Y, Y}(f)=a^{2}\left[\left(\frac{A^{2}}{2}+N_{o} B\right)^{2} \delta(f)+2\left(\frac{A^{2}}{4} \delta(f)+A^{2} N_{o} \operatorname{rect}(f / B)+N_{o}^{2} B \operatorname{tri}(f / B)\right)\right.
$$

$$
\begin{aligned}
& \left.*\left(\delta(f)+\frac{1}{2} \delta\left(f-2 f_{c}\right)+\frac{1}{2} \delta\left(f+2 f_{c}\right)\right)\right] \\
= & a^{2}\left(\frac{A^{2}}{2}+A^{2} N_{o} B+\left(N_{o} B\right)^{2}\right) \delta(f)+A^{2} N_{o} \operatorname{rect}(f / B)+N_{o}^{2} B \operatorname{tri}(f / B) \\
+ & \frac{A^{2}}{4}\left(\delta\left(f-2 f_{c}\right)+\delta\left(f+2 f_{c}\right)\right)+A^{2} N_{o}\left(\operatorname{rect}\left(\frac{f-2 f_{c}}{B}\right)+\operatorname{rect}\left(\frac{f+2 f_{c}}{B}\right)\right) \\
+ & N_{o}^{2} B\left(\operatorname{tri}\left(\frac{f-2 f_{c}}{B}\right)+\operatorname{tri}\left(\frac{f+2 f_{c}}{B}\right)\right) .
\end{aligned}
$$

## Problem 11.9

$$
S_{Y, Y}(f)=S_{X, X}(f)|H(f)|^{2}=\frac{a}{1+\left(f / f_{o}\right)^{2}} \cdot b^{2}\left[\operatorname{rect}\left(\frac{f-f_{c}}{f_{2}-f_{1}}\right)+\operatorname{rect}\left(\frac{f+f_{c}}{f_{2}-f_{1}}\right)\right],
$$

where $f_{c}=\left(f_{1}+f_{2}\right) / 2$. Assuming $f_{2}-f_{1} \ll f_{o}$, the input PSD will be approximately constant over the passband of the filter. In that case, the output PSD will be well approximated by

$$
\begin{aligned}
S_{Y, Y}(f) & \approx S_{X, X}\left(f_{c}\right)|H(f)|^{2}=\frac{a b^{2}}{1+\left(f_{c} / f_{o}\right)^{2}} \cdot\left[\operatorname{rect}\left(\frac{f-f_{c}}{f_{2}-f_{1}}\right)+\operatorname{rect}\left(\frac{f+f_{c}}{f_{2}-f_{1}}\right)\right] \\
\Rightarrow & =\frac{2 a b^{2}\left(f_{2}-f_{1}\right)}{1+\left(f_{c} / f_{o}\right)^{2}} \operatorname{sinc}\left(\left(f_{2}-f_{1}\right) \tau\right) \cos \left(\omega_{c} \tau\right)
\end{aligned}
$$

## Problem 11.34

$h(t)=s\left(t_{0}-t\right)$. In this case, $s\left(t_{0}-t\right)=s(t)$ so the impulse response of the matched filter is the same as the signal itself.

