Solutions to Chapter 8 Exercises

Problem 8.9

(a)

$$
R_{Y, Y}\left[n_{1}, n_{2}\right]=E\left[\left(X\left[n_{1}\right]+c\right)\left(X\left[n_{2}\right]+c\right)\right]=R_{X, X}\left[n_{1}, n_{2}\right]+c \mu_{X}\left[n_{1}\right]+c \mu_{X}\left[n_{2}\right]+c^{2}
$$

Since $X[n]$ is $\mathrm{WSS}, \mu_{X}[n]=\mu_{X}$ and $R_{X, X}\left[n_{1}, n_{2}\right]=R_{X, X}\left[n_{2}-n_{1}\right]$.

$$
\Rightarrow R_{Y, Y}\left[n_{1}, n_{2}\right]=R_{X, X}\left[n_{2}-n_{1}\right]+2 c \mu_{X}+c^{2} .
$$

(b)

$$
\begin{aligned}
E\left[X\left[n_{1}\right] Y\left[n_{2}\right]\right] & =E\left[X\left[n_{1}\right]\left(X\left[n_{2}\right]+c\right)\right]=R_{X, X}\left[n_{2}-n_{1}\right]+c \mu_{X} . \\
E\left[X\left[n_{1}\right]\right] E\left[Y\left[n_{2}\right]\right] & =\mu_{X}\left(\mu_{X}+c\right)=\mu_{X}^{2}+c \mu_{X} .
\end{aligned}
$$

The processes are not orthogonal (since $R_{X, Y}\left[n_{1}, n_{2}\right] \neq 0$).
The processes are not uncorrelated (since $R_{X, Y}\left[n_{1}, n_{2}\right] \neq \mu_{x} \mu_{Y}$).
The processes are not independent (since not uncorrelated and since $Y[n]=$ $X[n]+c)$.

Problem 8.11

(a)

$$
\mu_{X}(t)=\mu_{A} \cos (\omega t)+\mu_{B} \sin (\omega t)=0 .
$$

(b)

$$
\begin{aligned}
R_{X, X}\left(t_{1}, t_{2}\right) & =E\left[A^{2}\right] \cos \left(\omega t_{1}\right) \cos \left(\omega t_{2}\right)+E\left[B^{2}\right] \sin \left(\omega t_{1}\right) \sin \left(\omega t_{2}\right) \\
& +E[A B] \cos \left(\omega t_{1}\right) \sin \left(\omega t_{2}\right)+E[A B] \sin \left(\omega t_{1}\right) \cos \left(\omega t_{2}\right) \\
& =\frac{E\left[A^{2}\right]+E\left[B^{2}\right]}{2} \cos \left(\omega\left(t_{2}-t_{1}\right)\right)+\frac{E\left[A^{2}\right]-E\left[B^{2}\right]}{2} \cos \left(\omega\left(t_{1}+t_{2}\right)\right) .
\end{aligned}
$$

(c) $X(t)$ will be WSS if $E\left[A^{2}\right]=E\left[B^{2}\right] \Rightarrow \sigma_{A}^{2}=\sigma_{B}^{2}$.

Problem 8.15

(a) Since T is uniformly distributed over one period of $s(t)$, for any time instant $t, X(t)=s(t-T)$ will be equally likely to take on any of the values in one period of $s(t)$. Since $s(t)$ is 1 half of the time and -1 half of the time, we get

$$
\operatorname{Pr}(X(t)=1)=\operatorname{Pr}(X(t)=-1)=\frac{1}{2}
$$

(b)

$$
E[X(t)]=(1) \cdot \operatorname{Pr}(X(t)=1)+(-1) \cdot \operatorname{Pr}(X(t)=-1)=0
$$

This can also be seen in an alternative manner:

$$
E[X(t)]=E[s(t-T)]=\int s(t-u) f_{T}(u) d u=\int_{0}^{1} s(t-u) d u
$$

Since the integral is over one period of $s(t), E[X(t)]$ is just the d.c. value (time average) of $s(t)$ which is zero.
(c)

$$
\begin{aligned}
R_{X, X}\left(t_{1}, t_{2}\right) & =E\left[s\left(t_{1}-T\right) s\left(t_{2}-T\right)\right] \\
& =\int_{0}^{1} s\left(t_{1}-u\right) s\left(t_{2}-u\right) d u \\
& =\int_{0}^{1} s(v) s\left(v+t_{2}-t_{1}\right) d v \\
& =\left.s(t) * s(-t)\right|_{t=t_{2}-t_{1}}
\end{aligned}
$$

This is the time correlation of a square wave with itself which will result in the periodic triangle wave shown in Figure 1.
(d) The process is WSS.

Figure 1: Autocorrelation function for process of Exercise 8.11

Problem 8.18

(a)

$$
f_{X}(x ; t)=\left.\frac{f_{A}(a)}{\left|\frac{d X}{d A}\right|}\right|_{A=-\frac{1}{t} \ln (x)}=\frac{f_{A}\left(-\frac{1}{t} \ln (x)\right)}{t x}
$$

(b)

$$
\begin{gathered}
E[X(t)]=E\left[e^{-A t}\right]=\int_{0}^{\infty} e^{-a t} e^{-a} d a=\frac{1}{1+t} . \\
R_{X, X}\left(t_{1}, t_{2}\right)=E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]=E\left[e^{-A\left(t_{1}+t_{2}\right)}\right]=\frac{1}{1+t_{1}+t_{2}} .
\end{gathered}
$$

The process is not WSS.

Problem 8.33

(a) Consider a time instant, t, such that $0<t<t_{o}$.

$$
\begin{aligned}
\operatorname{Pr}\left(X(t)=1 \mid X\left(t_{o}\right)=1\right) & =\frac{\operatorname{Pr}\left(X\left(t_{o}\right)=1 \mid X(t)=1\right) \operatorname{Pr}(X(t)=1)}{\operatorname{Pr}\left(X\left(t_{o}\right)=1\right)} \\
& =\frac{\lambda t e^{-\lambda t}}{\lambda_{o} e^{-\lambda t_{o}}} \operatorname{Pr}(\text { no arrivals in }(0, t)) \\
& =\frac{t}{t_{o}} \exp \left(-\lambda\left(t-t_{o}\right)\right) \exp \left(-\lambda\left(t_{o}-t\right)\right) \\
& =\frac{t}{t_{o}} .
\end{aligned}
$$

Let S_{1} be the arrival time of the first arrival. Then $\{X(t)=1\} \Leftrightarrow\left\{S_{1} \leq t\right\}$. Hence, given that there is one arrival in $\left(0, t_{o}\right)$, that is $X\left(t_{o}\right)=1$,

$$
\begin{gathered}
\operatorname{Pr}\left(X(t)=1 \mid X\left(t_{o}\right)=1\right)=\operatorname{Pr}\left(S_{1} \leq t \mid X\left(t_{o}\right)=1\right)=F_{S_{1}}\left(t \mid X\left(t_{o}\right)=1\right)=\frac{t}{t_{o}} \\
\Rightarrow f_{S_{1}}\left(t \mid X\left(t_{o}\right)=1\right)=\frac{1}{t_{o}}, \quad 0 \leq t<t_{o}
\end{gathered}
$$

(b) Let $0 \leq t_{1} \leq t_{2} \leq t_{o}$. Also define

$$
\begin{aligned}
& S_{1}=\text { arrival time of first arrival, } \\
& S_{2}=\text { arrival time of second arrival. }
\end{aligned}
$$

The joint distribution of the two arrival times is found according to:

$$
\begin{aligned}
f_{S_{1}, S_{2}}\left(t_{1}, t_{2} \mid X\left(t_{o}\right)=2\right) & =f_{S_{1} \mid S_{2}}\left(t_{1} \mid S_{2}=t_{2}, X\left(t_{o}\right)=2\right) f_{S_{2}}\left(t_{2} \mid X\left(t_{o}\right)=2\right) \\
& =f_{S_{1} \mid S_{2}}\left(t_{1} \mid S_{2}=t_{2}\right) f_{S_{2}}\left(t_{2} \mid X\left(t_{o}\right)=2\right)
\end{aligned}
$$

To find $f_{S_{2}}\left(t_{2}\right)$, proceed as in part (a).

$$
\begin{aligned}
F_{S_{2}}\left(t_{2} \mid X\left(t_{o}\right)=2\right) & =\operatorname{Pr}\left(X\left(t_{2}\right)=2 \mid X\left(t_{o}\right)=2\right) \\
& =\operatorname{Pr}\left(X\left(t_{o}\right)=2 \mid X\left(t_{2}\right)=2\right) \frac{\operatorname{Pr}\left(X\left(t_{2}\right)=2\right)}{\operatorname{Pr}\left(X\left(t_{o}\right)=2\right)} \\
& =\exp \left(-\lambda\left(t_{o}-t_{2}\right)\right) \frac{\frac{\left(\lambda t_{2}\right)^{2}}{2} e^{-\lambda t_{2}}}{\frac{\left(\lambda t_{o}\right)^{2}}{2} e^{-\lambda t_{o}}} \\
& =\left(\frac{t_{2}}{t_{o}}\right)^{2} . \\
\Rightarrow f_{S_{2}}\left(t_{2} \mid X\left(t_{o}\right)=2\right) & =\frac{2 t_{2}}{t_{o}^{2}}, \quad 0 \leq t_{2} \leq t_{o} .
\end{aligned}
$$

Given $S_{2}=t_{2}$ there is one arrival between 0 and t_{2}. From the results of part (a), we know S_{1} is uniform over $\left(0, t_{2}\right)$ given $S_{2}=t_{2}$. Therefore

$$
f_{S_{1} \mid S_{2}}\left(t_{1} \mid t_{2}\right)=\frac{1}{t_{2}}, \quad 0 \leq t_{1} \leq t_{2}
$$

Putting the two previous results together we get

$$
\begin{aligned}
f_{S_{1}, S_{2}}\left(t_{1}, t_{2} \mid X\left(t_{o}\right)=2\right) & =f_{S_{1} \mid S_{2}}\left(t_{1} \mid S_{2}=t_{2}\right) f_{S_{2}}\left(t_{2} \mid X\left(t_{o}\right)=2\right) \\
& =\frac{2 t_{2}}{t_{o}^{2}} \cdot \frac{1}{t_{2}} \\
& =\frac{2}{t_{o}^{2}}, \quad 0 \leq t_{1} \leq t_{2} \leq t_{o}
\end{aligned}
$$

The two arrival times S_{1} and S_{2} are uniformly distributed over $0 \leq t_{1} \leq t_{2} \leq$ t_{o}.

In General we can write:

$$
f_{s_{1}, s_{2}, \ldots, s_{n}}\left(t_{1}, t_{2}, \ldots, t_{n} \mid X\left(t_{0}\right)=n\right)=\frac{n!}{t_{0}^{n}}
$$

Problem 8.34

$$
\begin{aligned}
\operatorname{Pr}(N(t)=k \mid N(t+\tau)=m) & =\operatorname{Pr}(N(t+\tau)=m \mid N(t)=k) \frac{\operatorname{Pr}(N(t)=k)}{\operatorname{Pr}(N(t+\tau)=m)} \\
& =\frac{\frac{(\lambda \tau)^{m-k}}{(m-k)!} e^{-\lambda \tau} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}}{\frac{(\lambda(t+\tau))^{m}}{m!} \exp (-\lambda(t+\tau))} \\
& =\binom{m}{k} \frac{t^{k} \tau^{m-k}}{(t+\tau)^{m}} .
\end{aligned}
$$

Problem 8.37

$$
\operatorname{Pr}(N(t)<10)=\sum_{k=0}^{9} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}
$$

(a)

$$
\lambda=0.1, t=10 \Rightarrow \operatorname{Pr}(N(t)<10)=\sum_{k=0}^{9} \frac{(1)^{k}}{k!} e^{-1} \approx 1 .
$$

(b)

$$
\lambda=10, t=10 \Rightarrow \operatorname{Pr}(N(t)<10)=\sum_{k=0}^{9} \frac{(100)^{k}}{k!} e^{-100} \approx 0 .
$$

(c)

$$
\begin{aligned}
\operatorname{Pr}(1 \text { call in } 10 \text { minutes }) & =1 \cdot e^{-1}=0.3679 \\
\operatorname{Pr}(2 \text { calls in } 10 \text { minutes }) & =\frac{1^{2}}{2!} \cdot e^{-1}=0.1839 \\
\operatorname{Pr}(1 \text { call, } 2 \text { calls }) & =\operatorname{Pr}(1 \text { call }) \operatorname{Pr}(2 \text { calls }) \\
& =\frac{1^{3}}{2!1!} e^{-2}=0.0677 .
\end{aligned}
$$

