Solutions to chapter 9 Exercises

Problem 9.22

a) The states of the system can be values of the voltage between switches. Hence there are three states, namely $-1,0$, and +1 . With this representation, the process is a random walk with reflecting boundaries. The Corresponding state transition matrix is

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
q & 0 & p \\
0 & 1 & 0
\end{array}\right]
$$

b)

$$
\begin{aligned}
& P^{2}=\left[\begin{array}{lll}
q & 0 & p \\
0 & 1 & 0 \\
q & 0 & p
\end{array}\right] \\
& P^{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
q & 0 & p \\
0 & 1 & 0
\end{array}\right] \\
& P^{4}=\left[\begin{array}{lll}
q & 0 & p \\
0 & 1 & 0 \\
q & 0 & p
\end{array}\right]
\end{aligned}
$$

We know that a recurrent state i is a periodic state if $p_{i, i}^{(n)}>0$ for $\mathrm{n}>1$. And also state i is recurrent if $P_{i, i}^{(n)}=1$ for some $n \geq 1$. In above states, the only recurrent state is state 0 and two other states are transient. Therefore they can't be periodic and we have just to determine if state 0 is periodic and if so what its period is. For this process $p_{0,0}^{(n)}>0$ only if n is even. Therefore, the process is periodic with period 2.
c) For $(i-1) t_{s} \leq t<i t_{s}$ and i odd, $\mathrm{x}(\mathrm{t})=0$. For ${ }^{i t_{s} \leq t<(i+1) t_{s}}$ and i odd,

$$
\begin{aligned}
& \operatorname{Pr}(X(t)=1)=p \\
& \operatorname{Pr}(X(t)=-1)=q=1-p
\end{aligned}
$$

Problem 9.12

(a)

$$
\mathbf{P}=\left[\begin{array}{ccc}
0.25 & 0.5 & 0.25 \\
0.4 & 0.6 & 0 \\
1 & 0 & 0
\end{array}\right]=\mathrm{Q} \Lambda \mathrm{Q}^{-1}
$$

Using MATLAB we found,

$$
\mathrm{Q}=\left[\begin{array}{rrr}
-0.4197 & 0.5774 & 0.2792 \\
0.1570 & 0.5774 & -0.3981 \\
0.8940 & 0.5774 & 0.8738
\end{array}\right], \quad \Lambda=\left[\begin{array}{ccc}
-0.4695 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0.3195
\end{array}\right] .
$$

The limiting form of the k-step transition probability matrix is then found as follows:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \Lambda^{k}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] . \\
& \lim _{k \rightarrow \infty} \mathrm{P}^{k}=\mathrm{Q} \lim _{k \rightarrow \infty} \Lambda^{k} \mathrm{Q}^{-1}=\left[\begin{array}{lll}
0.4 & 0.5 & 0.1 \\
0.4 & 0.5 & 0.1 \\
0.4 & 0.5 & 0.1
\end{array}\right]
\end{aligned}
$$

The steady-state distribution is then

$$
\pi=\left[\begin{array}{lll}
0.4 & 0.5 & 0.1
\end{array}\right]
$$

(b) Using MATLAB to calculate \mathbf{P}^{100}, we get the same matrix found in part (a):

$$
\begin{aligned}
\mathbf{P}^{100} & =\left[\begin{array}{ccc}
0.4 & 0.5 & 0.1 \\
0.4 & 0.5 & 0.1 \\
0.4 & 0.5 & 0.1
\end{array}\right] . \\
& \Rightarrow P_{1,3}^{(100)}=0.1 .
\end{aligned}
$$

The interpretation of this result is that for all practical purposes, the process has reached steady state after 100 steps.
(c)

$$
\pi(3)=\pi(0) \mathbf{P}^{3}=\left[\begin{array}{lll}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{ccc}
0.25 & 0.5 & 0.25 \\
0.4 & 0.6 & 0 \\
1 & 0 & 0
\end{array}\right]^{3}=\left[\begin{array}{lll}
0.4274 & 0.4808 & 0.0919
\end{array}\right]
$$

$\operatorname{Pr}($ in state 3 after 3 rd step $)=0.0919$.

Problem 9.14

(a)

$$
\mathbf{P}=\begin{gathered}
\\
0 \\
1 \\
2 \\
2 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{5}{12} & 0 & \frac{7}{12} & 0 & 0 & 0 & 0 \\
0 & \frac{5}{12} & 0 & \frac{7}{12} & 0 & 0 & 0 \\
0 & 0 & \frac{5}{12} & \frac{1}{6} & \frac{5}{12} & 0 & 0 \\
0 & 0 & 0 & \frac{7}{12} & 0 & \frac{5}{12} & 0 \\
0 & 0 & 0 & 0 & \frac{7}{12} & 0 & \frac{5}{122} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(b)
$\operatorname{Pr}($ loses in 3 tosses $)=\operatorname{Pr}(3 \rightarrow 2 \rightarrow 1 \rightarrow 0)=(5 / 12)^{3}=0.0723$.
(c)

$$
\operatorname{Pr}(\text { loses in } 4 \text { tosses })=\operatorname{Pr}(3 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0)=\frac{1}{6}\left(\frac{5}{12}\right)^{3}=0.0121
$$

$$
\begin{aligned}
\operatorname{Pr}(\text { loses in } 5 \text { tosses }) & =\operatorname{Pr}(3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0) \\
& +\operatorname{Pr}(3 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0) \\
& +\operatorname{Pr}(3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0) \\
& +\operatorname{Pr}(3 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 1 \rightarrow 0) \\
& =\left(\frac{1}{6}\right)^{2}\left(\frac{5}{12}\right)^{3}+3 \frac{7}{12}\left(\frac{5}{12}\right)^{4}=0.0548 .
\end{aligned}
$$

$\operatorname{Pr}($ loses in 5 or fewer tosses $)=0.0723+0.0121+0.0548=0.1392$.
We can verify this solution using MATLAB by noting that the probability of interest is found by finding the entry in the 4 th row and 1st column of \mathbf{P}^{5}.

