Solutions to Chapter 5 Home Exercises

Problem 5.10

$$
f_{X, Y}(x, y)=\frac{1}{8 \pi} \exp \left(-\frac{(x-1)^{2}+(y+1)^{2}}{8}\right)
$$

(a) $\operatorname{Pr}(X>2, Y<0)$

$$
\begin{aligned}
\operatorname{Pr}(X>2, Y<0) & =\int_{2}^{\infty} \int_{-\infty}^{0} \frac{1}{8 \pi} \exp \left(-\frac{(x-1)^{2}+(y+1)^{2}}{8}\right) \\
& =\int_{2}^{\infty} \frac{1}{\sqrt{8 \pi}} \exp \left(-\frac{(x-1)^{2}}{8}\right) d x \int_{-\infty}^{0} \frac{1}{\sqrt{8 \pi}} \exp \left(-\frac{(y+1)^{2}}{8}\right) d y \\
& =Q\left(\frac{2-1}{2}\right) \Phi\left(\frac{0+1}{2}\right)=Q\left(\frac{1}{2}\right) \Phi\left(\frac{1}{2}\right) \\
& =Q(1 / 2)(1-Q(1 / 2))
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \operatorname{Pr}(0<X<2,|Y+1|>2) \\
&= \operatorname{Pr}(\{0<X<2, Y>1\} \cup\{0<X<2, Y<-3\}) \\
&= \int_{0}^{2} \int_{-\infty}^{-3} f_{X, Y}(x, y) d x d y+\int_{0}^{2} \int_{1}^{\infty} f_{X, Y}(x, y) d x d y \\
&= \int_{0}^{2} \frac{1}{\sqrt{8 \pi}} \exp \left(-\frac{(x-1)^{2}}{8}\right) d x\left(\int_{-\infty}^{-3} \frac{1}{\sqrt{8 \pi}} \exp \left(-\frac{(y+1)^{2}}{8}\right) d y+\int_{1}^{\infty} \frac{1}{\sqrt{8 \pi}} \exp \left(-\frac{(y+1)^{2}}{8}\right) d y\right) \\
&=\left(Q\left(\frac{0-1}{2}\right)-Q\left(\frac{2-1}{2}\right)\right)\left(\Phi\left(\frac{-3+1}{2}\right)+Q\left(\frac{1+1}{2}\right)\right) \\
&=\left(Q\left(-\frac{1}{2}\right)-Q\left(\frac{1}{2}\right)\right)(\Phi(-1)+Q(1)) \\
&= 2 Q(1)\left(1-2 Q\left(\frac{1}{2}\right)\right)
\end{aligned}
$$

(c) $\operatorname{Pr}(Y>X)$

$$
\operatorname{Pr}(Y>X)=\int_{-\infty}^{\infty} \int_{-\infty}^{y} f_{X, Y}(x, y) d x d y
$$

This integral is easier to do with a change of variables. Let us use the substitution

$$
\begin{aligned}
u & =x-y \\
v & =x+y \\
J\left(\begin{array}{ll}
u & v \\
x & y
\end{array}\right) & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
\left|\operatorname{det}\left[\begin{array}{ll}
u & v \\
x & y
\end{array}\right]\right| & =2 \\
f_{U, V}(u, v) & =\frac{f_{X, Y}(x, y)}{2} \\
\operatorname{Pr}(Y>X) & =\operatorname{Pr}(U<0) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{0} \frac{1}{8 \pi} \exp \left(-\frac{(x-1)^{2}+(y+1)^{2}}{8}\right) \frac{1}{2} d u d v \\
& =\frac{1}{16 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{0} \exp \left(-\frac{(u-v-2)^{2}+(u+v+2)^{2}}{32}\right) d u d v \\
& =\frac{1}{16 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{0} \exp \left(-\frac{\left(u^{2}+v^{2}+4-4 u\right.}{16}\right) d u d v \\
& =\frac{1}{16 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{0} \exp \left(-\frac{(u-2)^{2}+v^{2}}{16}\right) d u d v \\
& =\frac{1}{16 \pi} \int_{-\infty}^{\infty} \exp \left(-\frac{v^{2}}{16}\right) d v \int_{-\infty}^{0} \exp \left(-\frac{(u-2)^{2}}{16}\right) d u \\
& =\frac{1}{16 \pi} \sqrt{16 \pi} \sqrt{16 \pi} \Phi\left(\frac{0-2}{\sqrt{8}}\right) \\
& =Q\left(\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Problem 5.30

Note that any linear transformation of jointly Gaussian random variables produces jointly Gaussian random variables. So U, V are both Gaussian random variables. And if $\rho_{U, V}=0, \mathrm{U}$ and V are independent.

$$
\begin{gathered}
E[U]=a E[X]+b E[Y]=0 \\
E[V]=c E[X]+d E[Y]=0 \\
E[U V]=a c E\left[X^{2}\right]+b d E\left[Y^{2}\right]+(a d+b c) E[X Y]=a c+b d+\rho(a d+b c)
\end{gathered}
$$

Thus, $\rho_{U, V}=0$ if

$$
a c+b d+\rho(a d+b c)=0
$$

So, U and V are independent, if

$$
a c+b d=-\rho(a d+b c)
$$

$$
\begin{aligned}
Z & =X^{2}+Y^{2} \\
W & =X Y \\
X & =\frac{\sqrt{Z+2 W}+\sqrt{Z-2 W}}{2} \\
Y & =\frac{\sqrt{Z+2 W}-\sqrt{Z-2 W}}{2} \\
f_{X}(x) & =\frac{1}{\pi\left(1+x^{2}\right)} \\
f_{Y}(y) & =\frac{1}{\pi\left(1+y^{2}\right)} \\
J\left(\begin{array}{cc}
z & w \\
x & y
\end{array}\right) & =\left(\begin{array}{cc}
2 x & 2 y \\
y & x
\end{array}\right) \\
\left|\operatorname{det}\left[J\left(\begin{array}{cc}
z & w \\
x & y
\end{array}\right)\right]\right| & =2\left|x^{2}-y^{2}\right| \\
f_{Z, W}(z, w) & =\frac{f_{X}(x) f_{Y}(y)}{2\left|x^{2}-y^{2}\right|} \\
& =\frac{1}{2 \pi^{2}} \frac{1}{\left(1+x^{2}\right)\left(1+y^{2}\right)\left|x^{2}-y^{2}\right|} \\
& =\frac{1}{2 \pi^{2}} \frac{1}{\left(1+x^{2}+y^{2}+x^{2} y^{2}\right)\left|x^{2}-y^{2}\right|} \\
& =\frac{1}{2 \pi^{2}} \frac{1}{\left(1+z^{2}+w^{2}\right) \sqrt{z^{2}-4 w^{2}}}
\end{aligned}
$$

