Solutions to Chapter 8 Home Exercises

Problem 8.12

Define $X(t)$ and $Y(t)$ according to:

$$
\begin{aligned}
X(t) & =A(t) \cos (t) \\
Y(t) & =B(t) \sin (t) \\
\mu_{A}(t) & =\mu_{B}(t)=0 \\
R_{A, A}(\tau) & =R_{B, B}(\tau)=R(\tau) \\
R_{A, B}(\tau) & =0
\end{aligned}
$$

Then,

$$
\begin{aligned}
E[X(t)] & =0 \\
E[Y(t)] & =0 \\
R_{X, X}\left(t_{1}, t_{2}\right) & =E\left[A\left(t_{1}\right) A\left(t_{2}\right) \cos \left(t_{1}\right) \cos \left(t_{2}\right)\right] \\
& =R\left(t_{2}-t_{1}\right) \cos \left(t_{1}\right) \cos \left(t_{2}\right) \\
R_{Y, Y}\left(t_{1}, t_{2}\right) & =E\left[B\left(t_{1}\right) B\left(t_{2}\right) \sin \left(t_{1}\right) \sin \left(t_{2}\right)\right] \\
& =R\left(t_{2}-t_{1}\right) \sin \left(t_{1}\right) \sin \left(t_{2}\right) \\
R_{Z, Z}\left(t_{1}, t_{2}\right) & =E\left[\left(X\left(t_{1}\right)+Y\left(t_{1}\right)\right)\left(X\left(t_{2}\right)+Y\left(t_{2}\right)\right)\right] \\
& =R_{X, X}\left(t_{1}, t_{2}\right)+R_{Y, Y}\left(t_{1}, t_{2}\right)+R_{X, Y}\left(t_{1}, t_{2}\right)+R_{Y, X}\left(t_{1}, t_{2}\right) \\
& =R\left(t_{2}-t_{1}\right)\left[\cos \left(t_{1}\right) \cos \left(t_{2}\right)+\sin \left(t_{1}\right) \sin \left(t_{2}\right)\right]\left(\operatorname{since} R_{X, Y}(\tau)=R_{Y, X}(\tau)=0\right) \\
& =R\left(t_{2}-t_{1}\right) \cos \left(t_{2}-t_{1}\right)
\end{aligned}
$$

Therefore, for this example, $Z(t)=X(t)+Y(t)$ is WSS, while $X(t)$ and $Y(t)$ are not WSS.

Problem 8.13

$$
\begin{aligned}
X(t) & =A(t) \cos \left(\omega_{0} t+\Theta\right) \\
E[X(t)] & =E[A(t)] E\left[\cos \left(\omega_{0} t+\Theta\right)\right]=0 \\
R_{X, X}\left(t_{1}, t_{2}\right) & =E\left[A\left(t_{1}\right) A\left(t_{2}\right)\right] E\left[\cos \left(\omega_{0} t_{1}+\Theta\right) \cos \left(\omega_{0} t_{2}+\Theta\right)\right] \\
& =\frac{1}{2} R_{A, A}\left(t_{2}-t_{1}\right)\left\{E\left[\cos \left(\omega_{0}\left(t_{2}-t_{1}\right)\right)\right]+E\left[\cos \left(\omega_{0}\left(t_{1}+t_{2}\right)+2 \Theta\right)\right]\right\} \\
& =\frac{1}{2} R_{A, A}\left(t_{2}-t_{1}\right) \cos \left(\omega_{0}\left(t_{2}-t_{1}\right)\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
E[Y(t)] & =0 \\
R_{Y, Y}\left(t_{1}, t_{2}\right) & =\frac{1}{2} R_{A, A}\left(t_{2}-t_{1}\right) \cos \left(\left(\omega_{0}+\omega_{1}\right)\left(t_{2}-t_{1}\right)\right)
\end{aligned}
$$

Hence, both $X(t)$ and $Y(t)$ are WSS. If $Z(t)=X(t)+Y(t)$,

$$
\begin{aligned}
E[z(t)] & =E[X(t)]+E[Y(t)]=0 \\
R_{Z, Z}\left(t_{1}, t_{2}\right) & =R_{X, X}\left(t_{1}, t_{2}\right)+R_{Y, Y}\left(t_{1}, t_{2}\right)+R_{X, Y}\left(t_{1}, t_{2}\right)+R_{Y, X}\left(t_{1}, t_{2}\right), \\
R_{X, Y}\left(t_{1}, t_{2}\right) & =E\left[A\left(t_{1}\right) A\left(t_{2}\right)\right] E\left[\cos \left(\omega_{0} t_{1}+\Theta\right) \cos \left(\left(\omega_{0}+\omega_{1}\right) t_{2}+\Theta\right)\right], \\
& =\frac{1}{2} R_{A, A}\left(t_{2}-t_{1}\right) \cos \left(\omega_{0}\left(t_{2}-t_{1}\right)+\omega_{1} t_{2}\right), \\
R_{Y, X}\left(t_{1}, t_{2}\right) & =R_{A, A}\left(t_{2}-t_{1}\right) \cos \left(\omega_{0}\left(t_{1}-t_{2}\right)+\omega_{1} t_{1}\right) .
\end{aligned}
$$

Since $R_{Z, Z}\left(t_{1}, t_{2}\right)$ is not a function of $t_{1}-t_{2}, Z(t)$ is not WSS.

Problem 8.16

(a) Since T is uniformly distributed over one period of $s(t)$, for any time instant $t, X(t)=s(t-T)$ will be equally likely to take on any of the values in one period of $s(t)$. Given the linear functional form of $s(t), X(t)$ will be uniform over $(-1,1)$.

$$
f_{X}(x ; t)= \begin{cases}\frac{1}{2} & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) $E[X(t)]=0$ since the PDF above is symmetric about zero.
(c)

$$
\begin{aligned}
R_{X, X}\left(t_{1}, t_{2}\right) & =E\left[s\left(t_{1}-T\right) s\left(t_{2}-T\right)\right] \\
& =\int_{0}^{1} s\left(t_{1}-u\right) s\left(t_{2}-u\right) d u \\
& =\int_{0}^{1} s(v) s\left(v+t_{2}-t_{1}\right) d v \\
& =\left.s(t) * s(-t)\right|_{t=t_{2}-t_{1}}
\end{aligned}
$$

This is the time correlation of a triangle wave with itself which will result in the periodic signal shown in Figure 2.

Figure 2: Autocorrelation function for process of Exercise 8.12
(d) The process is WSS.

Problem 8.20

Since

$$
\lim _{k \rightarrow \infty} R_{X, X}[k]=\mu_{X}=0
$$

the process is ergodic in the mean.

Problem 8.35

Using probability generating functions:

$$
\begin{aligned}
H_{X}(z) & =E\left[z^{X(t)}\right]=E\left[z^{\sum_{i=1}^{n} X_{i}(t)}\right]=E\left[\prod_{i=1}^{n} z^{X_{i}(t)}\right]=\prod_{i=1}^{n} E\left[z^{X_{i}(t)}\right]=\prod_{i=1}^{n} H_{X_{i}}(z) . \\
\operatorname{Pr}\left(X_{i}(t)=k\right) & =\frac{\left(\lambda_{i} t\right)^{k}}{k!} e^{-\lambda_{i} t} \\
H_{X_{i}}(z) & =\sum_{k=0}^{\infty} \frac{\left(\lambda_{i} z t\right)^{k}}{k!} e^{-\lambda_{i} t}=e^{\lambda_{i} z t} e^{-\lambda_{i} t}=e^{\lambda_{i} t(z-1)} \\
H_{X}(z) & =\prod_{i=1}^{n} e^{\lambda_{i} t(z-1)}=\exp \left(\left(\sum_{i=1}^{n} \lambda_{i}\right) t(z-1)\right)
\end{aligned}
$$

Define $\lambda=\sum_{i=1}^{n} \lambda_{i}$. Then $H_{X}(z)=\exp (\lambda t(z-1))$ which is the probability generating function of a Poisson random variable. Therefore $X(t)$ is a Poisson proces with arrival rate $\lambda=\sum_{i=1}^{n} \lambda_{i}$.

Problem 8.41

Expected number of strikes is st.
(a) In one minute, st $=\frac{1}{3} \cdot 1=\frac{1}{3}$.
(b) In ten minute, $s t=\frac{1}{3} \cdot 10=\frac{10}{3}$.
(c) Average time between strikes is $\frac{1}{s}=3$ minutes.

