Solutions to Chapter 9 Home Exercises

Problem 9.9

(a)

$$
\begin{aligned}
\operatorname{Pr}\left(X_{2}=1, X_{1}=0\right) & =\operatorname{Pr}\left(X_{2}=1 \mid X_{1}=0\right) \operatorname{Pr}\left(X_{1}=0\right)=p \cdot \operatorname{Pr}\left(X_{1}=0\right) . \\
\operatorname{Pr}\left(X_{1}=0\right) & =\operatorname{Pr}\left(X_{1}=0 \mid X_{0}=0\right) \operatorname{Pr}\left(X_{0}=0\right)+\operatorname{Pr}\left(X_{1}=0 \mid X_{0}=1\right) \operatorname{Pr}\left(X_{0}=1\right) \\
& =(1-p) s+q(1-s) \\
\Rightarrow \operatorname{Pr}\left(X_{2}=1, X_{1}=0\right) & =p(1-p) s+p q(1-s) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1}=1 \mid X_{0}=0, X_{2}=0\right) & =\frac{\operatorname{Pr}\left(X_{2}=0 \mid X_{1}=1, X_{0}=0\right) \operatorname{Pr}\left(X_{1}=1 \mid X_{0}=0\right)}{\operatorname{Pr}\left(X_{2}=0 \mid X_{0}=0\right)} \\
& =\frac{P_{1,0}^{(1)} P_{0,1}^{(1)}}{P_{0,0}^{(2)}} \\
& =\frac{q p}{(1-p)^{2}+p q} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\operatorname{Pr}\left(X_{2}=X_{1}\right) & =\operatorname{Pr}\left(X_{2}=0, X_{1}=0\right)+\operatorname{Pr}\left(X_{2}=1, X_{1}=1\right) \\
& =(1-p) \operatorname{Pr}\left(X_{1}=0\right)+(1-q) \operatorname{Pr}\left(X_{1}=1\right) \\
& =(1-p)[(1-p) s+q(1-s)]+(1-q)[p s+(1-q)(1-s)] \\
& =(1-p)^{2} s+q(1-p)(1-s)+p(1-q) s+(1-q)^{2}(1-s) . \\
\operatorname{Pr}\left(X_{1}=X_{0}\right) & =\operatorname{Pr}\left(X_{0}=0, X_{1}=0\right)+\operatorname{Pr}\left(X_{0}=1, X_{1}=1\right) \\
& =(1-p) s+(1-q)(1-s) .
\end{aligned}
$$

These expressions are not the same, so $\operatorname{Pr}\left(X_{1}=X_{0}\right) \neq \operatorname{Pr}\left(X_{2}=X_{1}\right)$.

Problem 9.23

(a)

$$
\left.\mathbf{P}=\underset{\text { go }}{\text { go }} \begin{array}{cc}
\text { go } & \text { skip } \\
\frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right)
$$

(b)

$$
\operatorname{Pr}(\text { go Friday } \mid \text { went Wednesday })=\frac{1}{2} .
$$

(c)

$$
\begin{gathered}
\mathbf{P}^{2}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{3}{4} & \frac{1}{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{5}{8} & \frac{3}{8} \\
\frac{9}{16} & \frac{7}{16}
\end{array}\right] \\
\operatorname{Pr}(\text { go Friday } \mid \text { went Monday })=P_{0,0}^{(2)}=\frac{5}{8} .
\end{gathered}
$$

(d) $\mathbf{P}=\mathrm{Q} \Lambda \mathrm{Q}^{-1}$ where

$$
\mathrm{Q}=\frac{1}{4}\left[\begin{array}{cc}
4 & 2 \\
4 & -3
\end{array}\right], \Lambda=\frac{1}{4}\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right], \mathrm{Q}^{-1}=\frac{1}{5}\left[\begin{array}{cc}
3 & 2 \\
4 & -4
\end{array}\right] .
$$

The limiting form of the eigenvalue matrix is

$$
\lim _{k \rightarrow \infty} \Lambda^{k}=\lim _{k \rightarrow \infty}\left[\begin{array}{cc}
1 & 0 \\
0 & \left(-\frac{1}{4}\right)^{k}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

Hence, the limiting form of the k-step transition matrix is

$$
\lim _{k \rightarrow \infty} \mathbf{P}^{k}=\frac{1}{20}\left[\begin{array}{cc}
4 & 2 \\
4 & -3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
4 & -4
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
3 & 2 \\
3 & 2
\end{array}\right] .
$$

Since both rows are equal, a steady state distribution does exist and it is given by

$$
\pi=\left[\begin{array}{ll}
\frac{3}{5} & \frac{2}{5}
\end{array}\right] .
$$

Problem 9.25

(a) The first three states communicate with period 1.
(b) All states communicate with period $=3$.
(c) All states communicate with period $=2$.

Problem 9.19

(a) Let $N=$ number of transmissions.

$$
\begin{gathered}
\operatorname{Pr}(N=n)=q^{n-1}(1-q) n=1,2,3, \ldots \\
E[N]=\sum_{n=1}^{\infty} n q^{n-1}(1-q)=\frac{1}{1-q} .
\end{gathered}
$$

(b)

$$
\begin{gathered}
T=\left(T_{t}+T_{a}\right) N-T_{a} \\
E[T]=\left(T_{t}+T_{a}\right) E[N]-T_{a}=\frac{T_{t}+T_{a}}{1-q}-T_{a}
\end{gathered}
$$

(c)

$$
\begin{gathered}
T=\left(T_{t}+T_{a}\right)\left(N_{1}+N_{2}\right)-2 T_{a} \\
E[T]=\left(T_{t}+T_{a}\right)\left(E\left[N_{1}\right]+E\left[N_{2}\right]\right)-2 T_{a}=\frac{2\left(T_{t}+T_{a}\right)}{1-q}-2 T_{a}
\end{gathered}
$$

