MVE136 Random Signals Analysis

Written home exam Friday 30 October 2020 8.30–12.30

TEACHER AND EXAMINER: Patrik Albin 0317723512 palbin@chalmers.se.

AIDS: All aids are permitted. (See the Canvas course "Ordinarie tentamen Modul:0111, MVE136" with instructions for this exam for clarifications.)

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Calculate Pr(X(1)Y(2)Z(3) = 4) when X(t), Y(t) and Z(t) are independent Poisson processes with intensity/rate 1. (5 points)

Task 2. Let $\{X(t)\}_{t\geq 0}$ be a zero-mean Gaussian process with autocorrelation function $R_{XX}(s,t) = \min(s,t)$. What probability distribution has $Y = X(1) + \int_0^1 X(s) \, ds$?

(5 points)

Task 3. Let $\{X_k\}_{k=0}^{\infty}$ be a Markov chain with state space $\{0, 1, 2\}$, initial distribution $\pi(0) = (1 \ 0 \ 0)$ and all transition probabilities $p_{ij} = 1/3$. Calculate $\mathbf{E}\{T\}$ for $T = \min\{k > 0 : X_k = 2\}$. (5 points)

Task 4. A continuous time LTI system with insignal X(t) has outsignal $Y(t) = \int_{-\infty}^{\infty} X(t-s) \frac{1}{1+s^2} ds$. What is the transfer function H(f) of the system? (5 points) **Task 5.** Let $Y(t) = e^{-t/2}X(e^t)$ for $t \in \mathbb{R}$ where X(t) is the process in Task 2. Show that Y(t) is a stationary process. (5 points)

Task 6. Explain how an AR(1) process $\{X_k\}_{k=-\infty}^{\infty}$ can be viewed as the limit of an *n*'th order MA process [i.e., MA(*n*) process] as $n \to \infty$.

MVE136 Random Signals Analysis

Solutions to written exam 30 October 2020

Task 1. The possible values of (X(1), Y(2), Z(3)) are (4, 1, 1), (1, 4, 1), (1, 1, 4), (2, 2, 1), (2, 1, 2) and (1, 2, 2) with probability $\left[\frac{1}{24}(1^4 \cdot 2 \cdot 3 + 1 \cdot 2^4 \cdot 3 + 1 \cdot 2 \cdot 3^4) + \frac{1}{4}(1^2 \cdot 2^2 \cdot 3 + 1^2 \cdot 2 \cdot 3^2 + 1 \cdot 2^2 \cdot 3^2)\right] e^{-6} = \frac{51}{2} e^{-6}.$

Task 2. Clearly, Y is N(0, σ^2) with $\sigma^2 = \mathbf{E}\{X(1)^2\} + 2\mathbf{E}\{X(1) [\int_0^1 X(s) \, ds]\} + \mathbf{E}\{[\int_0^1 X(s) \, ds]^2\} = 1 + 2\int_0^1 R_{XX}(1, s) \, ds + \int_0^1 \int_0^1 R_{XX}(s, t) \, ds dt = \ldots = \frac{7}{3}.$

Task 3. On the average it takes the chain the mean 3/2 of a waiting time distribution with p = 2/3 to move from state 0. After this move with probability 1/2 the chain is at state 1 and with probability is at state 2. Hence $\mathbf{E}\{T\} = 3/2 + (1/2) \cdot \mathbf{E}\{T\} + (1/2) \cdot 0$ giving $\mathbf{E}\{T\} = 3$.

Task 4. $H(f) = \pi e^{-2\pi |f|}$.

Task 5. As Y(t) is Gaussian it is enough to show that Y(t) is WSS. Here $\mathbf{E}\{Y(t)\} = 0$ is constant while $R_{YY}(t, t+\tau) = e^{-(t+t+\tau)/2} \min(e^t, e^{t+\tau}) = e^{-\tau/2}$ for $\tau \ge 0$ and similary $R_{YY}(t, t+\tau) = e^{\tau/2}$ for $\tau \le 0$ do not depend on t.

Task 6. $X_k = e_k - aX_{k-1} = e_k - ae_{k-1} + a^2X_{k-2} = \dots = \sum_{i=0}^{n-1} (-a)^i e_{k-i} + (-a)^n X_{k-n}$ $\rightarrow \sum_{i=0}^{\infty} (-a)^i e_{k-i} \text{ as } n \rightarrow \infty \text{ when } |a| < 1.$