MVE136 Random Signals Analysis

Written home exam Friday 30 October 2020 8.30-12.30

Teacher and Examiner: Patrik Albin 0317723512 palbin@chalmers.se.
Aids: All aids are permitted. (See the Canvas course "Ordinarie tentamen Modul: 0111, MVE136" with instructions for this exam for clarifications.)

GRADES: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Calculate $\operatorname{Pr}(X(1) Y(2) Z(3)=4)$ when $X(t), Y(t)$ and $Z(t)$ are independent Poisson processes with intensity/rate 1. (5 points)

Task 2. Let $\{X(t)\}_{t \geq 0}$ be a zero-mean Gaussian process with autocorrelation function $R_{X X}(s, t)=\min (s, t)$. What probability distribution has $Y=X(1)+\int_{0}^{1} X(s) d s ?$
(5 points)
Task 3. Let $\left\{X_{k}\right\}_{k=0}^{\infty}$ be a Markov chain with state space $\{0,1,2\}$, initial distribution $\pi(0)=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ and all transition probabilitites $p_{i j}=1 / 3$. Calculate $\mathbf{E}\{T\}$ for $T=$ $\min \left\{k>0: X_{k}=2\right\}$. (5 points)

Task 4. A continuous time LTI system with insignal $X(t)$ has outsignal $Y(t)=$ $\int_{-\infty}^{\infty} X(t-s) \frac{1}{1+s^{2}} d s$. What is the transfer function $H(f)$ of the system? (5 points)

Task 5. Let $Y(t)=\mathrm{e}^{-t / 2} X\left(\mathrm{e}^{t}\right)$ for $t \in \mathbb{R}$ where $X(t)$ is the process in Task 2 . Show that $Y(t)$ is a stationary process. (5 points)

Task 6. Explain how an $\mathrm{AR}(1)$ process $\left\{X_{k}\right\}_{k=-\infty}^{\infty}$ can be viewed as the limit of an n 'th order MA process [i.e., MA($n)$ process] as $n \rightarrow \infty$.

MVE136 Random Signals Analysis

Solutions to written exam 30 October 2020

Task 1. The possible values of $(X(1), Y(2), Z(3))$ are $(4,1,1),(1,4,1),(1,1,4),(2,2,1)$, $(2,1,2)$ and $(1,2,2)$ with probability $\left[\frac{1}{24}\left(1^{4} \cdot 2 \cdot 3+1 \cdot 2^{4} \cdot 3+1 \cdot 2 \cdot 3^{4}\right)+\frac{1}{4}\left(1^{2} \cdot 2^{2} \cdot 3+\right.\right.$ $\left.\left.1^{2} \cdot 2 \cdot 3^{2}+1 \cdot 2^{2} \cdot 3^{2}\right)\right] \mathrm{e}^{-6}=\frac{51}{2} \mathrm{e}^{-6}$.

Task 2. Clearly, Y is $\mathrm{N}\left(0, \sigma^{2}\right)$ with $\sigma^{2}=\mathbf{E}\left\{X(1)^{2}\right\}+2 \mathbf{E}\left\{X(1)\left[\int_{0}^{1} X(s) d s\right]\right\}+$ $\mathbf{E}\left\{\left[\int_{0}^{1} X(s) d s\right]^{2}\right\}=1+2 \int_{0}^{1} R_{X X}(1, s) d s+\int_{0}^{1} \int_{0}^{1} R_{X X}(s, t) d s d t=\ldots=\frac{7}{3}$.

Task 3. On the average it takes the chain the mean $3 / 2$ of a waiting time distribution with $p=2 / 3$ to move from state 0 . After this move with probability $1 / 2$ the chain is at state 1 and with probability is at state 2 . Hence $\mathbf{E}\{T\}=3 / 2+(1 / 2) \cdot \mathbf{E}\{T\}+(1 / 2) \cdot 0$ giving $\mathbf{E}\{T\}=3$.

Task 4. $H(f)=\pi \mathrm{e}^{-2 \pi|f|}$.
Task 5. As $Y(t)$ is Gaussian it is enough to show that $Y(t)$ is WSS. Here $\mathbf{E}\{Y(t)\}=0$ is constant while $R_{Y Y}(t, t+\tau)=\mathrm{e}^{-(t+t+\tau) / 2} \min \left(\mathrm{e}^{t}, \mathrm{e}^{t+\tau}\right)=\mathrm{e}^{-\tau / 2}$ for $\tau \geq 0$ and similary $R_{Y Y}(t, t+\tau)=\mathrm{e}^{\tau / 2}$ for $\tau \leq 0$ do not depend on t.

Task 6. $X_{k}=e_{k}-a X_{k-1}=e_{k}-a e_{k-1}+a^{2} X_{k-2}=\ldots=\sum_{i=0}^{n-1}(-a)^{i} e_{k-i}+(-a)^{n} X_{k-n}$ $\rightarrow \sum_{i=0}^{\infty}(-a)^{i} e_{k-i}$ as $n \rightarrow \infty$ when $|a|<1$.

