MVE136 Random Signals Analysis

Written home exam Monday 4 January 2021 2-6 PM

Teacher and Examiner: Patrik Albin 0317723512 palbin@chalmers.se.
Aids: All aids are permitted. (See the Canvas course "Omtentamen 1 Modul: 0111, MVE136" with instructions for this exam for clarifications.)

Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Is the process $\sin \left(X(t)^{2}\right)$ WSS when $\{X(t)\}_{t \in \mathbb{R}}$ is a WSS Gaussian process?
(5 points)
Task 2. Calculate $\operatorname{Pr}(X(3)=3 \mid X(1)=1, X(2)=2, X(4)=4, X(5)=5)$ for a Poisson processs $\{X(t)\}_{t \geq 0}$. (5 points)

Task 3. Let $\{X(t)\}_{t \geq 0}$ be a unit rate Poisson process and $\{Y(t)\}_{t \in \mathbb{R}}$ a zero-mean WSS Gaussian process with autocorrelation function $R_{Y Y}(\tau)=\mathrm{e}^{-|\tau|}$ for $\tau \in \mathbb{R}$ that is independent of the Poisson process. Find an expression (that can be readily numerically calculated by Matlab etc.) for $\operatorname{Pr}(X(t) \geq Y(t))$ for $t \geq 0$. (5 points)

Task 4. Consider a Markov chain $\left\{X_{n}\right\}_{n=0}^{+\infty}$ with states $\{0,1,2\}$, initial probability distribution $\pi(0)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)=(0,1,0)$ and transition probability matrix P. Express the probability $\operatorname{Pr}(X(1)=1 \mid X(2)=2)$ in terms of the elements of P. (5 points)

Task 5. Consider a continuous time LTI system with insignal continuous time white noise $N(t)$ and WSS outsignal $\{Y(t)\}_{t \in \mathbb{R}}$ with autocorrelation function $R_{Y Y}(\tau)=\mathrm{e}^{-|\tau|}$ for $\tau \in \mathbb{R}$. What is the impulse response? (5 points)

Task 6. Consider an MA(2)-process $\left\{X_{n}\right\}_{n=-\infty}^{+\infty}$ given by $X_{n}=e_{n}-b e_{n-1}$, where $b \in(-1,1)$ is a real number and $\left\{e_{n}\right\}_{n=-\infty}^{+\infty}$ discrete time white noise. Explain how X_{n} can be considered a limit case of an $\operatorname{AR}(N)$-process as $N \rightarrow \infty$. (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 4 January 2021

Task 1. As $X(t)$ is WSS Gaussian it is stationary and then also $\sin \left(X(t)^{2}\right)$ is stationary and therefore WSS.

Task 2. $\operatorname{Pr}=\frac{\operatorname{Pr}(X(1)=1, X(2)=2, X(3)=3, X(4)=4, X(5)=5)}{\operatorname{Pr}(X(1)=1, X(2)=2, X(4)=4, X(5)=5)}=\frac{[\operatorname{Pr}(X(1)=1)]^{5}}{[\operatorname{Pr}(X(1)=1)]^{3} \operatorname{Pr}(X(2)=2)}=\ldots=\frac{1}{2}$.
Task 3. As $X(t)$ is $\operatorname{Po}(t)$-distributed and $Y(t)$ is $\mathrm{N}(0,1)$-distributed independent of $X(t)$ we have $\operatorname{Pr}(X(t) \geq Y(t))=\sum_{k=0}^{\infty} \operatorname{Pr}(Y(t) \leq k) \operatorname{Pr}(X(t)=k)=\sum_{k=0}^{\infty} \Phi(k) \frac{t^{k}}{k!} \mathrm{e}^{-t}$. Task 4. $\quad \operatorname{Pr}=\frac{\operatorname{Pr}(X(2)=2 \mid X(1)=1) \operatorname{Pr}(X(1)=1)}{\operatorname{Pr}(X(2)=2)}=\frac{p_{12} \pi(1)_{1}}{\pi(2)_{2}}$ where $\pi(1)=(0,1,0) P=$ $\left(p_{10}, p_{11}, p_{1,2}\right)$ so that $\pi(1)_{1}=p_{11}$ and $\pi(2)_{2}=(\pi(1) P)_{2}=p_{10} p_{02}+p_{11} p_{12}+p_{12} p_{22}$.

Task 5. As $S_{Y Y}(f)=\frac{2}{1+(2 \pi f)^{2}}=|H(f)|^{2} S_{N N}(f)=|H(f)|^{2} N_{0} / 2$ we require $|H(f)|^{2}=$ $\frac{4 / N_{0}}{1+(2 \pi f)^{2}}$ which holds for $h(t)=\left(2 / \sqrt{N_{0}}\right) \mathrm{e}^{-t} u(t)$.

Task 6. $e_{n}=\sum_{k=0}^{N-1} b^{k} X_{n-k}+b^{N} e_{n-N} \rightarrow \sum_{k=0}^{+\infty} b^{k} X_{n-k}$ as $N \rightarrow \infty$.

