MVE136 Random Signals Analysis

Written home exam Monday 16 August 2021 2-6 PM

Teacher and Examiner: Patrik Albin 0317723512 palbin@chalmers.se.
Aids: All aids are permitted. (See the Canvas course "Omtentamen 2 Modul: 0111, MVE136" with instructions for this exam for clarifications.)

Grades: $12(40 \%), 18(60 \%)$ and $24(80 \%)$ points for grade 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good luck!
Task 1. Find a WSS continuous time random process $\{X(t)\}_{t \in \mathbb{R}}$ that is not strict sense stationary. (5 points)

Task 2. Calculate $\operatorname{Pr}(X(0)=0)$ for a zero-mean WSS random process $X(t)$ with autocorrelation function $R_{X X}(\tau)=0$. (5 points)

Task 3. Calculate $\operatorname{Pr}(X(1) X(2) X(3)=6)$ for a Poisson process $\{X(t)\}_{t \geq 0}$ with arrival rate 1. (5 points)

Task 4. A Markov chain has four states $\{0,1,2,3\}$ and all transition probabilities $p_{i j}=1 / 4$. Calculate the expected value of the time it takes for the chain to move from state 0 to state 3 . (5 points)

Task 5. You may select any zero-mean WSS process $\{X(t)\}_{t \in \mathbb{R}}$ as insignal to an LTI system with impulse response $h(t)=\operatorname{sinc}(t)=\sin (\pi t) /(\pi t)$ for $t \in \mathbb{R}$. What are the restrictions on the possible outsignals $\{Y(t)\}_{t \in \mathbb{R}}$ from the LTI system? (5 points)

Task 6. Explain why an $\mathrm{AR}(1)$-process is a Markov chain. (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 16 August 2021

Task 1. Let all values of $X(t)$ be independent of each other with zero-mean and unit variance but not all CDF's $F_{X(t)}(x)$ being the same.

Task 2. 1.
Task 3. Clearly $\operatorname{Pr}(X(1) X(2) X(3)=6)=\operatorname{Pr}(X(1)=1, X(2)=1, X(3)=6)+$ $\operatorname{Pr}(X(1)=1, X(2)=2, X(3)=3)=\operatorname{Pr}(X(1)=1, X(2)-X(1)=0, X(3)-X(2)=$ 5) $+\operatorname{Pr}(X(1)=1, X(2)-X(1)=1, X(3)-X(2)=1)=\operatorname{Pr}(X(1)=1) \operatorname{Pr}(X(2)-X(1)=$ 0) $\operatorname{Pr}(X(3)-X(2)=5)+\operatorname{Pr}(X(1)=1) \operatorname{Pr}(X(2)-X(1)=1) \operatorname{Pr}(X(3)-X(2)=1)=$ $\frac{1}{5!}\left(\mathrm{e}^{-1}\right)^{3}+\left(\mathrm{e}^{-1}\right)^{3}=\frac{121}{120} \mathrm{e}^{-3}$.

Task 4. For the sought after expectation E we have $E=1+(3 / 4) \cdot E$ giving $E=4$.
Task 5. As the insignal is zero-mean $\mu_{X}=0$, so must be the outsignal $\mu_{Y}=0$. As for the autocorrelation function $R_{Y Y}(\tau)=\int_{-\infty}^{\infty} \mathrm{e}^{j 2 \pi f \tau} S_{Y Y}(f) d f$, since $H(f)=1$ for $|f| \leq 1 / 2$ and 0 for $|f|>1 / 2$ we get $S_{Y Y}(f)=|H(f)|^{2} S_{X X}(f)=0$ for $|f|>1 / 2$ with no other restrictions on $S_{Y Y}(f)$ (except symmetry and positivity).

Task 6. Because the next value of the process $X[k+1]=a X[k]+e_{k+1}$ depends on the history of the process $\{X[\ell]\}_{\ell=-\infty}^{k}$ through the last member of the history $X[k]$ only (as e_{k+1} is independent of that history).

