MVE136 Random Signals Analysis

Written home exam Monday 16 August 2021 2–6 PM

TEACHER AND EXAMINER: Patrik Albin 0317723512 palbin@chalmers.se.

AIDS: All aids are permitted. (See the Canvas course "Omtentamen 2 Modul: 0111, MVE136" with instructions for this exam for clarifications.)

GRADES: 12 (40%), 18 (60%) and 24 (80%) points for grade 3, 4 and 5, respectively. MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Find a WSS continuous time random process $\{X(t)\}_{t\in\mathbb{R}}$ that is not strict sense stationary. (5 points)

Task 2. Calculate Pr(X(0) = 0) for a zero-mean WSS random process X(t) with autocorrelation function $R_{XX}(\tau) = 0$. (5 points)

Task 3. Calculate Pr(X(1)X(2)X(3) = 6) for a Poisson process $\{X(t)\}_{t \ge 0}$ with arrival rate 1. (5 points)

Task 4. A Markov chain has four states $\{0, 1, 2, 3\}$ and all transition probabilities $p_{ij} = 1/4$. Calculate the expected value of the time it takes for the chain to move from state 0 to state 3. (5 points)

Task 5. You may select any zero-mean WSS process $\{X(t)\}_{t\in\mathbb{R}}$ as insignal to an LTI system with impulse response $h(t) = \operatorname{sin}(t) = \sin(\pi t)/(\pi t)$ for $t \in \mathbb{R}$. What are the restrictions on the possible outsignals $\{Y(t)\}_{t\in\mathbb{R}}$ from the LTI system? (5 points)

Task 6. Explain why an AR(1)-process is a Markov chain. (5 points)

MVE136 Random Signals Analysis

Solutions to written exam 16 August 2021

Task 1. Let all values of X(t) be independent of each other with zero-mean and unit variance but not all CDF's $F_{X(t)}(x)$ being the same.

Task 2. 1.

Task 3. Clearly $\Pr(X(1)X(2)X(3) = 6) = \Pr(X(1) = 1, X(2) = 1, X(3) = 6) + \Pr(X(1) = 1, X(2) = 2, X(3) = 3) = \Pr(X(1) = 1, X(2) - X(1) = 0, X(3) - X(2) = 5) + \Pr(X(1) = 1, X(2) - X(1) = 1, X(3) - X(2) = 1) = \Pr(X(1) = 1) \Pr(X(2) - X(1) = 0) \Pr(X(3) - X(2) = 5) + \Pr(X(1) = 1) \Pr(X(2) - X(1) = 1) \Pr(X(3) - X(2) = 1) = \frac{1}{5!} (e^{-1})^3 + (e^{-1})^3 = \frac{121}{120} e^{-3}.$

Task 4. For the sought after expectation E we have $E = 1 + (3/4) \cdot E$ giving E = 4.

Task 5. As the insignal is zero-mean $\mu_X = 0$, so must be the outsignal $\mu_Y = 0$. As for the autocorrelation function $R_{YY}(\tau) = \int_{-\infty}^{\infty} e^{j2\pi f\tau} S_{YY}(f) df$, since H(f) = 1 for $|f| \leq 1/2$ and 0 for |f| > 1/2 we get $S_{YY}(f) = |H(f)|^2 S_{XX}(f) = 0$ for |f| > 1/2 with no other restrictions on $S_{YY}(f)$ (except symmetry and positivity).

Task 6. Because the next value of the process $X[k+1] = a X[k] + e_{k+1}$ depends on the history of the process $\{X[\ell]\}_{\ell=-\infty}^{k}$ through the last member of the history X[k] only (as e_{k+1} is independent of that history).