autumn  2007,  7.5 points

Teachers        Literature        Examination       Assimilation    

The course covers, i.a.,
*  Basics:
events and probabilities, measures, random variables and their distributions,  expectations
with a view towards the Lebesgue integral,  the first Borel-Cantelli lemma.

*  Independence and Conditioning:
conditional probabilities, the second Borel-Cantelli lemma, the strong law of large numbers, random walk and the Markov property.

*  Transforms:
probability generating functions, moment generating functions, Laplace transforms,
characteristic functions, Poisson approximation, the central
limit theorem.

Now when we have entered a new century, it seems appropriate that we have a course
at the Master level that covers the foundations of
probability theory that were laid after
the year 1900!                     

The book to be used is
Williams: Weighing the Odds (Cambridge University Press 2001).
It is available in paperback; the  plan is to take Chapters 1-5 and part of the first
section in Chapter 9 as a base for the course.  If you like to know more about the
author, click here:  Williams . On that home page, you also find a link to the book.

The course takes place in the second quarter of the academic year,
i.e., essentially November-December (until the Christmas break).
There will be three sessions a week,
two of them for lectures, and
one for classes, with exercises, examples, etc.

The  schedule looks as follows:

lectures: Mondays and Wendesdays, 10.00-11.45
classes: Mondays, 13.15-15.00
(But on the first Monday, there are four lecture hours!)

And the location is the same throughout:   MV: F33  

See  you there, on Monday, October 29, at. 10.00!

Torgny Lindvall   &   Sofia Tapani


Click here for some very influential people!

Two poineers of measure and integration theory:
H. Lebesgue        E. Borel      

and four dedicated to probability theory:
A. Khinchin     A. Kolmogorov    P. Lévy     J.  Doob