Tutorial 1 Problems

for discussion on Week 44, 2011

Sets, countability, events and σ -algebras (σ -fields)

- 1. Prove that a union of two countable sets is countable. Optionally, prove that a union of countably many of countable sets is countable.
- 2. Describe the sample space Ω for the following experiments:
 - (a) Toss of 3 indistinguishable coins;
 - (b) 3 tosses of one coin;
 - (c) Drawing 2 balls from an urn containing 2 black and 2 white balls;
 - (d) Picking a point at random from [0, 1];
 - (e) Picking a random ark from a circle (give at least two ways of defining Ω !)
- 3. Prove that σ -field \mathcal{F} contains unions of any two of its sets. More generally, it contains at most countable unions of its sets.
- 4. Deduct from this that it also contains the symmetric differences $A\Delta B$ ('either A or B, but not both') for all $A, B \in \mathcal{F}$.
- 5. Prove Problem 1.2.1 from GS 1 , (i.e. Problem 1 for Section 1.2, page 4). One of these identities has been shown at the lecture for the case of two sets (i.e. when I=1,2). Prove the remaining one for this case and, optionally, prove for a general at most countable I (i.e. finite or infinite countable)
- 6. Problem 1.2.4 from GS

Probability and its main properties

1. A cube with all its faces coloured is cut into 1000 equal size small cubes. Find the probability that a small ball chosen at random has exactly 2 coloured faces.

¹In what follows, GS stands for the course book: Geoffrey Grimmett and David Stirzaker, *Probability and Random Processes*, Oxford University Press, 3rd edition, 2001. Problem x.y.z means Problem z for Section x.y in this book

- 2. Prove monotonicity of the probability: $P(A) \leq P(B)$ whenever $A \subseteq B$, $A, B \in \mathcal{F}$.
- 3. Derive formula for the probability of the symmetric difference of two events $A\Delta B$ in terms of their probabilities and the probability of their intersection.
- 4. Problem 1.3.1 from GS, page 8
- 5. Prove inclusion-exclusion formula from Problem 1.3.4 from GS, for n=3 first. Try for general n by induction.
- 6. Problem 1.7.4 from GS.²

Symmetric experiment and combinatorics

- 1. Problem 1.8.1 from GS
- 2. The Ruritanian lottery requires that you pick a combination of 5 numbers from 50.
 - (a) What is your chance of winning (one in ...)?
 - (b) What is your chance of having no number correct?
 - (c) What is your chance of having precisely one number correct?

²Notice that often a correct mathematical formulation of the problem is half its solution! Imagine an experiment when someone asks you every morning if you prefer a cup of coffee (x) to tea (y), and presumably your answer may depend on whether you slept well tonight (C). Denote A an event that at a randomly selected day you prefer coffee to tea. Is $\mathbf{P}(A) = 1$ under the given conditions?