Tutorial 5 Problems

for discussion on Week 48

Main discrete distributions

- 1. Let ξ be a discrete random variable uniformly distributed over numbers $1, 2, \ldots, n$. Find its expectation and the variance.
- 2. A r.v. ξ is the number of trials to get the first 'success' in the series of independent Bernoulli trials with success probability p. Find its distribution which is called a *Geometric districution* Geom(p) with parameter $p \in (0, 1)$, and find its expectation and variance.
- 3. Problem 3.8.6 from GS^1
- 4. Problem 3.11.14 from GS
- 5. Problem 3.11.17 from GS

Main continuous distributions

- 1. Let $\eta \sim \text{Unif}(a, b)$. Find the distribution of $c\eta + d$ for some $c, d \in \mathbb{R}$.
- 2. Compute the expected value and the variance of the Exponential $\text{Exp}(\lambda)$ distribution which has the density $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$ and 0 otherwise.
- 3. Show that the variance of the Normal $\mathcal{N}(m, \sigma^2)$ distribution is σ^2 .
- 4. Finish the proof started at the lecture that for any $a \in \mathbb{R}, b \in (0, \infty)$ and a r.v. $\xi \sim \mathcal{N}(m, \sigma^2)$, the random variable $a\xi + b$ is Normal. What are its parameters?
- 5. Let ξ is absolutely continuous with pdf $f_{\xi}(x)$. Show that $\zeta = a\xi + b$ is also absolutely continuous and express its pdf in terms of $f_{\xi}(x)$.

¹As usual, GS stands for the course book: Geoffrey Grimmett and David Stirzaker, *Probability and Random Processes*, Oxford University Press, 3rd edition, 2001. Problem x.y.z means Problem z for Section x.y in this book

- 6. Problem 4.7.8 from GS
- 7. A random point (ξ, η) is uniformly distributed in the square $\{(x, y) : |x| + |y| \le \sqrt{2}\}$. Find
 - (a) the joint c.d.f. of the pair (ξ, η) ;
 - (b) marginal distribution of ξ ;
 - (c) $\mathbf{E}\xi$ and $\mathbf{var}\xi$;
 - (d) covariance $\mathbf{cov}(\xi, \eta)$ and the correlation coefficient $\mathbf{cor}(\xi, \eta)$.
 - (e) Check if ξ and η are independent.
- 8. Problem 4.7.1 from GS
- 9. The *covariance* of two random variables is defined as

$$\mathbf{cov}(\xi_1,\xi_2) = \mathbf{E}[(\xi_1 - \mathbf{E}\,\xi_1)(\xi_2 - \mathbf{E}\,\xi_2)].$$

Show that

$$\mathbf{cov}(\xi_1,\xi_2) = \mathbf{E}[\xi_1\xi_2] - \mathbf{E}\,\xi_1\,\mathbf{E}\,\xi_2$$

and establish the following properties of the covariance: whatever the constants $a, c \in \mathbb{R}$,

- 1. $\mathbf{cov}(\xi_1, \xi_2) = \mathbf{cov}(\xi_2, \xi_1);$
- 2. $\mathbf{cov}(\xi_1, c) = 0;$
- 3. $\mathbf{cov}(a\xi_1,\xi_2) = a \mathbf{cov}(\xi_1,\xi_2);$
- 4. $\operatorname{cov}(\xi_1 + \xi_2, \xi_3) = \operatorname{cov}(\xi_1, \xi_3) + \operatorname{cov}(\xi_2, \xi_3);$
- 5. $\mathbf{cov}(\xi_1, \xi_2) = 0$, if ξ_1, ξ_2 are independent.
- 10. The (Pearson) *correlation coefficient* of two random variables is defined as

$$\mathbf{cor}(\xi_1,\xi_2) = rac{\mathbf{cov}(\xi_1,\xi_2)}{\mathbf{var}\,\xi_1\,\,\mathbf{var}\,\xi_2}\,.$$

Based on the previous exercise, show the following properties of the

correlation coefficient: whatever the constants $a, c \in \mathbb{R}$,

1.
$$\operatorname{cor}(\xi_1, \xi_2) = \operatorname{cor}(\xi_2, \xi_1);$$

2. $\operatorname{cor}(\xi_1, c) = 0;$
3. $\operatorname{cor}(a\xi_1, \xi_2) = \operatorname{sgn}(a) \operatorname{cor}(\xi_1, \xi_2), \text{ where}$
 $\operatorname{sgn}(a) = \begin{cases} 1, & \text{if } a > 0 \\ 0, & \text{if } a = 0 \\ -1, & \text{if } a < 0; \end{cases}$
4. $\operatorname{cor}(\xi_1, \xi_2) = 0, \quad \text{if } \xi_1, \xi_2 \text{ are independent.}$

NB. The last two exercises show that the covariance have the same properties as the scalar product in \mathbb{R}^d defined for two vectors $x = (x_1, \ldots, x_d)$ and $y = (y_1, \ldots, y_d)$ by means of $(x, y) = \sum_{i=1}^d x_i y_i$. Notice that $(x, x) = ||x||^2$ is the squared length (norm) of x. Similarly, covariance can be considered as a scalar product in the space $\mathcal{L}_2(\Omega, \mathcal{F}, \mathbf{P})$ of centred (i.e. having expectation 0) random variables ξ such that their norm $\|\xi\| \stackrel{\text{def}}{=} \sqrt{\operatorname{cov}(\xi,\xi)} = \sqrt{\mathbf{E}\,\xi^2}$ is finite. Since (x,y)/(||x|| ||y||) is the cosine of the angle between x and y in \mathbb{R}^d , the correlation coefficient has also a meaning of the cosine of the angle between ξ and η . This implies that it is always between -1 and 1! When it is 1, the angle is 0 so that ξ and η are co-linear pointing in the same direction, so that $\eta = a\xi$ for some a > 0. Similarly, when the correlation is -1, they point in the opposite directions (the angle is π) so that $\eta = a\xi$ with a negative a. Another interesting observation is that uncorrelated centred random variables are orthogonal vectors in $\mathcal{L}_2(\Omega, \mathcal{F}, \mathbf{P})$.

11. Problem 3.11.16 from GS (*uncorrelated* means the correlation coefficient, and so is the covariance, is 0)