Tutorial 6 Problems

for discussion on Week 49

Multivariate distributions

- 1. Let (ξ_1, ξ_2) be a point uniformly distributed in the triangle with vertices (0,0), (1,0) and (0,1) in the plane. Find
 - (a) the marginal distribution of ξ_1 ;
 - (b) the mean vector of (ξ_1, ξ_2) ;
 - (c) the covariance matrix.

Are ξ_1 and ξ_2 independent?

- 2. Prove that if both components in a two-dimensional multivariate Normal random vector are uncorrelated then they are independent (this is NOT true in general for non-Normal r.v.'s!). *Hint:* How does the covariance matrix look like in this case?
- 3. Let ξ, η are two independent standard Normal random variables. Find the c.d.f. of the distance from the point (ξ, η) in the plane to the origin. This distribution is called *Raleigh distribution*. *Hint:* pass to the polar coordinates in the integral of the joint p.d.f.
- 4. In the settings of the previous task, find the distribution of the polar angle of the vector (ξ, η) .

Conditional distributions and sums

- 1. Work out to the end the Example (5) on p.68 of GS^1
- 2. Problem 3.7.1(a-e) from GS.
- 3. Problem 3.11.4 from GS
- 4. Problem 3.11.8 from GS

¹As usual, GS stands for the course book: Geoffrey Grimmett and David Stirzaker, *Probability and Random Processes*, Oxford University Press, 3rd edition, 2001. Problem x.y.z means Problem z for Section x.y in this book

- 5. Problem 3.11.6a from GS
- 6. Prove the *lack of memory* property of the Exponential distribution:

$$\mathbf{P}\{\xi > x + y \mid \xi > x\} = \mathbf{P}\{\xi > y\}.$$

- 7. Find the distribution of the sum of two independent uniformly distributed in [0, 1] random variables. Is it uniform?
- 8. A random point (ξ, η) is uniformly distributed in the triangle $\{(x, y) : x + y \le 1, x, y \ge 0\}$. Find:
 - (a) the conditional density of ξ given $\eta = y$. What distribution is that?
 - (b) the conditional expectation $\mathbf{E}[\xi \mid \eta]$, its expectation and its variance.
 - (c) covariance $\mathbf{cov}(\xi, \eta)$.

Main inequalities and Laws of Large Numbers

1. Establish inequality

$$\mathbf{P}\{|\xi - \mathbf{E}\,\xi| \ge \varepsilon\} \le \frac{\mathbf{E}(\xi - \mathbf{E}\,\xi)^4}{\varepsilon^4}$$

and use it to prove the Strong Law of large Numbers started at the lecture: $\varphi_n = \frac{1}{n} \sum_{k=1}^n \chi_k$ converges almost surely to $\mathbf{P}(A)$, where χ_k is the indicator of the event A in the kth independent trial. It was shown at the last lecture that for this it is sufficient that $\mathbf{P}\{|\varphi_n - \mathbf{P}(A)| > 1/k \ i.o.\} = 0$ for all k. Use the Borel-Cantelli lemma to show this.

- 2. Establish the Chernoff bound² explicitly for random variables having the following distributions:
 - (a) Bernoulli;
 - (b) Poisson;
 - (c) Exponential;
 - (d) Standard Normal.

²Recall, the Chernoff bound or the Exponential Chebyshov inequality is: $\mathbf{P}\{\xi \geq \varepsilon\} \leq \inf_{\lambda>0} e^{-\lambda\varepsilon} \mathbf{E} e^{\lambda\xi}$