
Lektion 2

Marians AB


2007-11-07 Chapter 14-15 Statistical acceptance sampling

Statians AB

Process control

- Control the process so that no bad units are produced
- Improve the processs
- Eliminate sources of variation.
- Maintain a good process.

No control

- If the quality of the product is so high that in reality there does not exist any bad Units
- The producer uses statistical process control and can show that the quality is good.
- No serious consequences if bad units are shipped.

Stationes AB

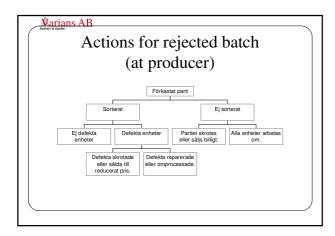
100% control

- If the consequences of bad quality is not acceptable.
- The production is not capable.
- Automatically control is good.
- Example- ATM or metal detection in production.

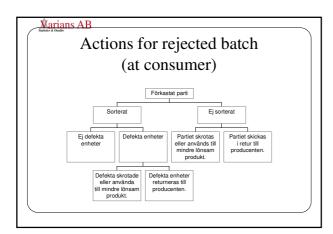
Statistical acceptance sampling

- Destructive testing
- When 100% test cost too much or is not practical.
- The product has high quality but unstable process and hence zero test is not acceptable.

Marians AB


Statistical test versus 100%

- + Cost less due to less testing
- + Destructive testing is possible
- + Less handling with products and less transport damage.
- + The risk that the batch can be rejected drives quality.


Statians AB

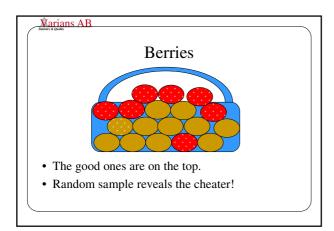
Statistical test versus 100%

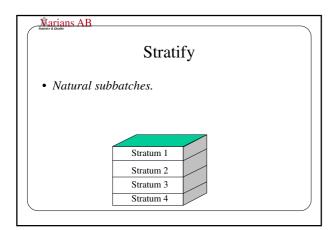
- Risk of accepting bad batches and reject good ones.
- Less information of the product.
- Statistical testing demands more planning and documentation than 100% test.

Categorization of test plans

- Acceptance sampling and rectifying inspection
- Attribute control or variable controll.
- Simple-, double- or multiple test.

Rarians AB


Batch

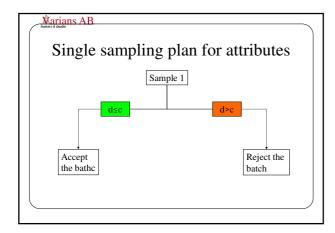

- The batches should be homogene. Units should be of same type, size and produced under the same time and condiditions.
- Large batchs are prefered over small ones.
- Batch size = the number of units ina batch.


Marians AB

Random sample

- Very important that the sample is random
- Risk of "salted" batches...
- Common sense sampling destroys the statistical analysis!
- Stratification is possible in some times.

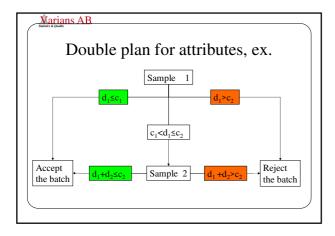
Varians AB


Attribut data

- Yes-no data.
- 15 bottles of 45 cracked.
- 2 bags of 300 did not contain exactely 10 screws.
- The fraction defects.
- Defect = not fulfilling the specification

Statians AB

Single sampling plan for attributes


- n = sample size
- c = acceptance number
- Let d = number of observed defect units in the sample.
- d>c => reject the batch
- d≤c => accept the batch!

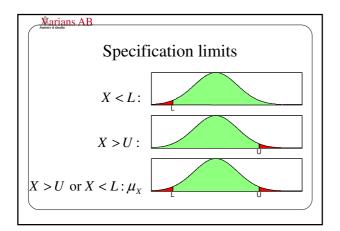
Double plan for attribute data, ex.

- $n_1 =$ first sample size
- c_1 = acceptance number for first sample.
- $n_2 = size of second sample.$
- c_2 = acceptance number for both samples.
- d_1 = Number of defect observed in first sample.
- d₂ = Number of defect observed in second sample.

Variable data

- Data are continous
- The milk package should contain at least 1.0 liter.
- Max crash force should be under 10000N

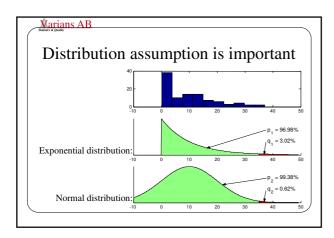
Marians AB


2 types of variable control

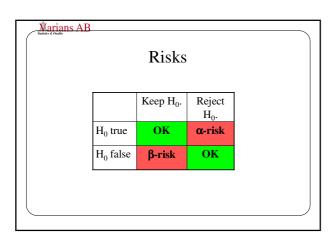
- Control of fraction defect in the batch. (ISO 3951)
- 2. Control of some process parameter, eg. process average.

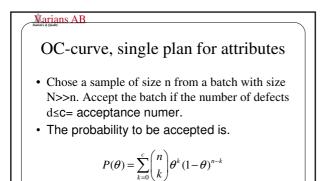
Varians AB

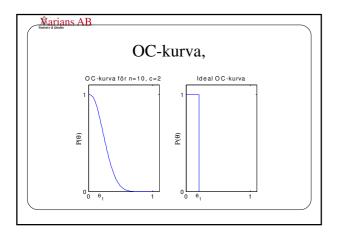
Variable data vs attribute data


- + Less sample size for the same OC-curve.
- + More knowledge about the process. Mer kunskap om processen.
- Must know the distribution of the variable.
- One plan for each characteristics.
- A batch can be rejected with zero defect units. Bad for morale.
- Control often more difficult and expensive.

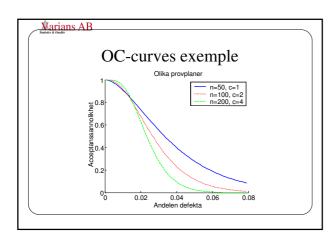
Distribution assumption is important

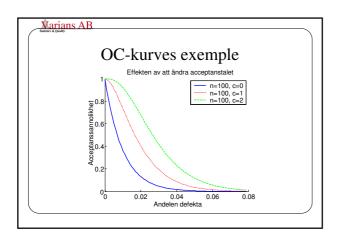

- Assume an upper specification limit U=35.
- Take a sample of size 100 and analyze them.
- Average = 10.
- Standard deviation = 10.

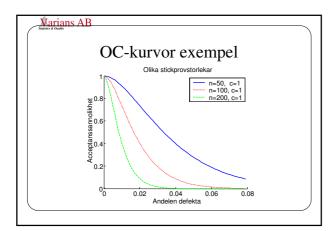


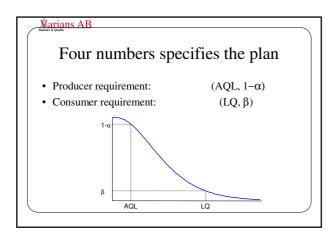


Is the batch accepted?


- Detote with θ the fractionndelen defect units int the batch.
- Test following hypothesis
 - $\begin{cases} H_0: \quad \theta = \theta_1 \text{ (the batch is accepted)} \end{cases}$
 - $H_1: \theta > \theta_1$ (the batch is rejected)

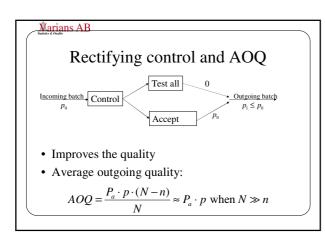


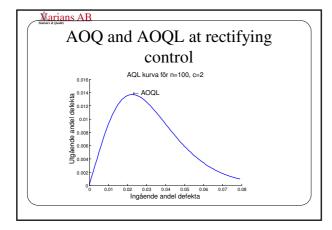




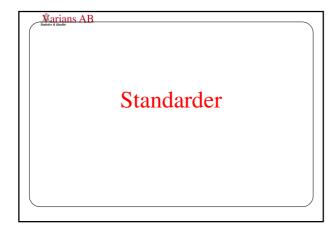
Plans with c=0

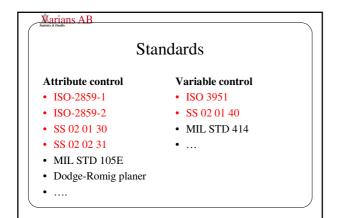
- Very tought to the producer
- Sometimes not so economical for the consumer.

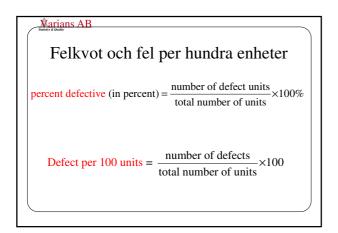


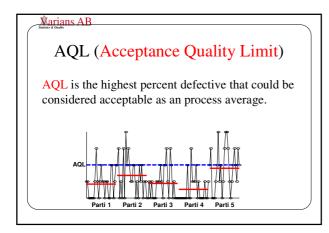


Type A & Type B plans Attribute data


- If the batch size is **finite**, the number of defect units is hypergeometrically distributed. => Type A.
- If the batch size is **infinite** the number of defects are binomially distributed. => Typ B.
- **Rule:** If the batch is big or if the sample is taken from a series of batchs then Type B can be used.







ISO 2859-1 och ISO 3951

- Are a collection of test plans
- Based on AQL (Acceptance Quality Limit)
- Inspection levels (S-1, S-2, S-3, S-4, I, II, III)
- Switching rules (normal, tightened and reduced)
- Can be used for a continous stream of batches.

Varians AB

The meaning of AQL

- At AQL most of the batches will be accpted.
- Acceptance increases with batch sizes.
- AQL does not give consumer protection.
- AQL does not give the producer right to deliver bad units.

Classification

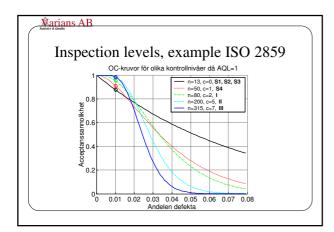
Defect: Any non-conformance of the unit to specified requirements.

Critical defect: Likely to result in hazardous or unsafe conditions for individuals.

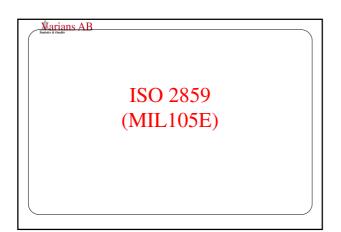
• Major defect: Likely to result in failure or reduce the function of the product.

• Minor defect: Not likely to reduce the usability of the product.

Marians AB


Acceptance and rejection

- Acceptability of batches will be judged by using sampling plans according to AQL.
- The buyer has always the right to reject any defect unit found during test.
- A rejected batch may be reinspected only after all units have been reexamined and all defective units are removed.


Nations AB

Inspection levels

- Determines the relationship between the batch size and the sample size.
- Gives different discriminations
- Denotation: S1, S2, S3, S4, I, II, III
- Inspection II is normally used.
- S1 S4 may be used where small sample sizes are neccessary and large sampling risks can be accepted.

¥arians AB

How to use ISO 2859-1

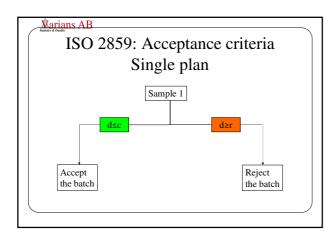
- 1. Choose a suitable code letter (table 14-4) depending on batch size and inspection level.
- Choose suitable sampling table II, III or IV depending on single, double or multiple plans are wished. (Montgomery has table II-plans in 14-5→14-7)
- 3. Choose plans for normal (A), tightened (B) or reduced (C) control.
- 4. Start with normal control and use the switching rules!

	Co	ode le	etters	ISO	2859)	
	Speciella kontrollnivåer				Normala kontrollnivåer		
Partistorlek	S-1	S-2	S-3	S-4	I	п	ш
2-8	А	A	A	A	A	A	В
9-15	А	A	A	A	A	В	С
16-25	А	A	В	В	В	с	D
26-50	А	В	В	С	с	D	E
51-90	В	В	С	С	С	E	F
91-150	в	В	С	D	D	F	G
151-280	В	с	D	E	E	G	Н
281-500	В	С	D	E	F	Н	1
501-1200	С	с	E	F	G	J	K
1201-3200	С	D	E	G	Н	К	L
3201-10000	С	D	F	G	1	L	М
10001-35000	С	D	F	н	к	М	N
35001-150000	D	E	G	J	L	N	Р
150001-500000	D	E	G	1	М	Р	Q
500001-	D	E	н	K	N	0	R

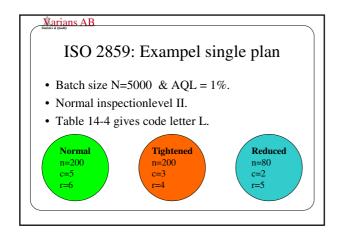
Xarians AB

ISO 2859: Sampling plans

- Single plan: Tabell II.
- Double plan Tabell III.
- Multiple plan Tabell IV.
- The tables are divided into normal, tightened and reduced control.

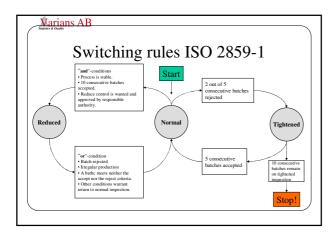

Marians AB

ISO 2859: Choosing sampling plans


- Batch size + inspection level \Rightarrow code letter
- Code letter + AQL ⇒ sampling plans in table II, III or IV.

ISO 2859: Acceptance criteria Single plan

- n = sample size
- c = acceptance number
- r = rejection number
- Let d = number of observed defect units in the sample.
- If $d \ge r \Longrightarrow$ reject the batch!
- d≤c => accept the batch!



Rearians AB

ISO 2859. Acceptance at reduced control

- Let d be the number of defect units in the sample.
- If c<d<r then accept the batch. Change to normal inspection.

Statians AB

The switching rules are important!

- The switching rules protects the consumer in both ISO 2859 and in ISO 3951.
- There are no switchin rules in ISO 2859-2, since the consumer protection is dealt with a liminting quality (LQ).