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Week 3) Statistial inferene in quality ontrol and improvementPart a) Single-sample aseLet x1, . . . , xn be i.i.d observations of some random vari-able X with mean
EX = µand variane VarX = σ2The sample mean x̄ and variane s2 are unbiased esti-mators of the mean µ and the variane σ2, respetively,
Ex̄ = µ

Es2 = σ2Reall also the .l.t, implying
x̄ − µ

σ̂/
√

n
≈ x̄ − µ

σ/
√

n

ap∼ N(0, 1)where σ̂ is some natural estimate of σ.Note that
√Var x̄ = σ/

√
noften is referred to as the standard error of the mean.Its natural estimator is σ̂/

√
n.� OH 1 �



The ase X ∼ Ber(p).Here,
µ = p and σ2 = p(1 − p)Moreover, f =
∑

i xi is the frequeny of �positives�, and
p̂ = x̄ =

f

nestimates p without bias.The �natural� estimator of the standard deviation is
σ̂ =

√

p̂(1 − p̂)Suppose we want to test
H0 : p ≥ p0 vs H1 : p < p0It is natural to rejet H0 when f ≤ c, where c is deter-mined from the requirement

P (f ≤ c|p0) ≤ α and P (f ≤ c + 1|p0) > αsine f has a disrete distribution.The power of the test is
1 − β = P (f ≤ c|p1) for p1 < p0
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In Chapter 15, Montgomery introdues typa-A andtype-B alulations of the probability P (f ≤ c|p).We now add a �type-C alulation� based on the normalapproximation of the Binomial distribution,
P (f ≤ c|p) = Φ

(

c + 0.5 − np
√

np(1 − p)

)

This is appropriate when n is large and p is neither toosmall or too large.The two-sided test
H0 : p = p0 vs H1 : p 6= p0is treated similarly. Rejet H0 when f ≤ c1 or f ≥ c2,where

P (f ≤ c1|p0) ≈ P (f ≥ c2|p0) ≈
α

2A type-C alulation leads to
c1 ≈ np0 − 0.5 − zα/2

√

np0(1 − p0)

c2 ≈ np0 + 0.5 + zα/2

√

np0(1 − p0)
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The half-number orretion is often omitted.If so, the rule is to rejet H0 : p = p0 when |z| > zα/2,where
z =

p̂ − p0
√

p0(1 − p0)/n

ap∼ N(0, 1)

A orresponding on�dene interval for p onsists of all
p0 that are not rejeted by the the test. That is, all p0suh that

−zα/2 ≤
p̂ − p0

√

p0(1 − p0)/n
≤ zα/2It is somewhat easier to use as starting point the fatthat the event

−zα/2 ≤
p̂ − p0

√

p̂(1 − p̂)/n
≤ zα/2ours with probability ≈ 1 − α, and rearrange to

p̂ − zα/2

√

p̂(1 − p̂)/n ≤ p ≤ p̂ + zα/2

√

p̂(1 − p̂)/nwhih not seldom is written
p = p̂ ± zα/2

√

p̂(1 − p̂)/n
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The ase X ∼ N(µ, σ2).Here,
x̄ − µ

σ/
√

n
∼ N(0, 1)

(n − 1)s2

σ2
∼ χ2(n − 1)It follows from the fat that x̄ and s2 are independentthat

x̄ − µ

s/
√

n
∼ t(n − 1)

Suppose we want to test
H0 : µ ≤ µ0 vs H1 : µ > µ0It is natural to rejet H0 when x̄ > c, where c is deter-mined from the requirement

x̄ − µ0

σ/
√

n
> zα ⇔ x̄ > µ0 + zασ/

√
nif σ is known, and from

x̄ − µ0

s/
√

n
> tα,n−1 ⇔ x̄ > µ0 + tα,n−1s/

√
nif σ is unknown and must be estimated.
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The orresponding on�dene interval onsists of all µ0that are not rejeted by the test. That is, µ is in theon�dene interval if̄
x − µ

s/
√

n
≤ tα,n−1Clearly, this holds true if, and only if,

µ ≥ x̄ − tα,n−1s/
√

nConsider next the test of
H0 : µ = µ0 vs H1 : µ 6= µ0The rule is to rejet if |t| > tα/2,n−1, where

t =
x̄ − µ0

s/
√

nIf σ is known, replae s and tα/2,n−1 by σ and zα/2,respetively. In this ase we write z instead of t.The orresponding on�dene interval onsists of all µ0that are not rejeted by the test. That is, all µ suhthat
−tα/2,n−1 ≤

x̄ − µ

s/
√

n
≤ tα/2,n−1Rearrange.
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The test of
H0 : σ ≥ σ0 vs H1 : σ < σ0rejets when

(n − 1)s2

σ2
0

< χ2
1−α,n−1 ⇔ s < σ0

√

χ2
1−α,n−1

n − 1The orresponding on�dene interval onsists of all σ0that are not rejeted by the test, i.e, all σ satisfying
σ ≤ s

√

n − 1

χ2
1−α,n−1If the alternative is two-sided, rejet H0 : σ = σ0 when

(n − 1)s2

σ2
0

< χ2
1−α/2,n−1 or (n − 1)s2

σ2
0

> χ2
α/2,n−1The orresponding on�dene interval onsists of all σsatisfying

χ2
1−α/2,n−1 ≤

(n − 1)s2

σ2
≤ χ2

α/2,n−1Rearrange.
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P -value.De�nition. The P -value is the smallest level of signi�-ane that would lead to rejetion of the null hypothesis.Example. Normal data. The P -value of the test of
H0 : µ ≤ µ0 vs H1 : µ > µ0is P (T > t), where T ∼ t(n − 1) and

t =
x̄ − µ0

s/
√

nAlso note that many statistiians prefer to write the nullhypothesis as
H0 : µ = µ0 instead of H0 : µ ≤ µ0sine the level is alulated under the assumption thatthe true mean is µ0. This applies of ourse also to similartests against one-sided alternatives.Example. Bernoulli data. The P -value of the test of

H0 : p = p0 vs H1 : p 6= p0is 2P (Z > |z|), where Z ∼ N(0, 1) and
z =

p̂ − p0
√

p0(1 − p0)/n
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Week 3) Statistial inferene in quality ontrol and improvementPart b) The two-sample aseempirism theory1st sample n1 x̄1 s2
1 µ1 σ2

12nd sample n2 x̄2 s2
2 µ2 σ2

2The samples must be independent. They may be fromthe same population, but need not be. Typially, theyare from di�erent subpopulations of some population.If data are normal,
s2

1/σ
2
1

s2
2/σ

2
2

∼ F (n1 − 1, n2 − 1)Thus, we may rejet
H0 : σ1 = σ2 vs H1 : σ1 6= σ2at level α, if

s2
1

s2
2

< f1−α/2,n1−1,n2−1 or s2
1

s2
2

> fα/2,n1−1,n2−1Note that the level should be high (typially 10% or even20%), if the test is used to determine whether one anassume that σ1 = σ2 in a subsequent analysis of thedi�erene µ1 − µ2. � OH 9 �



Normal data. The ase σ1 = σ2 = σ.The pooled sample variane,
s2
P =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2is an unbiased estimator of σ2. Moreover,
(n1 + n2 − 2)s2

P

σ2
∼ χ2(n1 + n2 − 2)Now note that̄

x1 − x̄2 − (µ1 − µ2)

σ
√

1/n1 + 1/n2

∼ N(0, 1)and, sine the sample varianes are independent of thesample means,
x̄1 − x̄2 − (µ1 − µ2)

s
√

1/n1 + 1/n2

∼ t(n1 + n2 − 2)Tests and on�dene intervals are based on theese fats.Note that there are slightly di�erent proedures depend-ing on whether σ is known or not.
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Normal data. The ase σ1 6= σ2.Here,
x̄1 − x̄2 − (µ1 − µ2)
√

σ2
1/n1 + σ2

2/n2

∼ N(0, 1)and it an be shown that
x̄1 − x̄2 − (µ1 − µ2)
√

s2
1/n1 + s2

2/n2

ap∼ t(ν)where ν is the integer part of
(

s2
1/n1 + s2

2/n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1(There is a typo in Formula (4.55) on p 134.)Tests and on�dene intervals are based on theese fats.
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Bernoulli data.Here, fi = nix̄i are the frequenies of positives in thetwo samples, and
p̂i =

fi

niis an unbiased estimate of the proportion pi of positivesin the ith sample.The type-C test statisti for testing the null hypothesis
H0 : p1 = p2 = pis

z =
p̂1 − p̂2

√

p̂(1 − p̂) (1/n1 + 1/n2)

ap∼ N(0, 1)where
p̂ =

f1 + f2

n1 + n2
=

n1p̂1 + n2p̂2

n1 + n2is unbiased for the under H0 ommon proportion p.Two-sided on�dene intervals for p1 − p2 typially use
−zα/2 ≤

p̂1 − p̂2 − (p1 − p2)
√

p̂1(1 − p̂1)/n1 + p̂2(1 − p̂2)/n2

≤ zα/2as starting point. Single-sided on�dene statements useonly one of the inequalities and α/2 should be replaedby α. � OH 12 �



Week 3) Statistial inferene in quality ontrol and improvementPart ) Analysis of varianeThe Paper Tensile Strength ExperimentTensile strength of paper (psi)Observation no j
x i 1 2 3 4 5 6 nȳi ȳi0.05 1 7 8 15 11 9 10 60 10.000.10 2 12 17 13 18 19 15 94 15.670.15 3 14 18 19 17 16 18 102 17.000.20 4 19 25 22 23 18 20 127 21.17See Setion 4.5.1 on p 140.This is a so alled single-fator experiment.
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Data and model:
yij = µi + ǫij = µ + τi + ǫijfor i = 1, . . . , a and j = 1, . . . , n, where

µ =
1

a

∑

i

µi and τi = µi − µNote
∑

i

τi = 0

We assume that the ǫij's are i.i.d N(0, σ2), i.e that the
yij's are independent and

yij ∼ N(µ + τi, σ2)

The null hypothesis of no e�et
H0 : τ1 = · · · = τa = 0is to be tested vs the alternative

H1 : τi 6= 0 for at least one i
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The total variation in the data is desribed by the totalsum of squaresSSTot =
∑

i

∑

j

(yij − ȳ)2

=
∑

i

∑

j

(yij − ȳi)
2 + n

∑

i

(ȳi − ȳ)2

= SSErr + SSTreatThis is the sum of squares identity.The assoiated degrees of freedom aredfTot = an − 1dfErr = a(n − 1)dfTreat = a − 1Note dfTot = dfErr + dfTreatThe idea of an analysis of variane is to relate (or om-pare) the within groups variation SSErr/dfErr and thebetween groups variation SSTreat/dfTreat.If we divide an SS with its df, we get a mean sum ofsquares, denoted MS.
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It is easy to see that
s2 = MSErr =

SSErr
a(n − 1)is unbiased for σ2. Moreover,

a(n − 1) s2

σ2
∼ χ2(a(n − 1))It is somewhat harder to see that

ESSTreat = (a − 1) σ2 + n
∑

i

τ 2
i

Thus, under H0, MSTreat is unbiased for σ2.Moreover, MSTreat is independent of MSErr, and
(a − 1)MSTreat

σ2
∼ χ2(a − 1)It follows that

F0 =
MSTreatMSErr ∼ F (a − 1, a(n − 1))and that we may rejet the null hypothesis of no e�et,when

F0 > Fα,a−1,a(n−1)The result of an ANOVA is most often summarized inan ANOVA table. � OH 16 �



The Paper Tensile Strength Experiment.See Exanple 4.12 on p 147.Tensile strength of paper (psi)Observation no j
x i 1 2 3 4 5 6 nȳi ȳi0.05 1 7 8 15 11 9 10 60 10.000.10 2 12 17 13 18 19 15 94 15.670.15 3 14 18 19 17 16 18 102 17.000.20 4 19 25 22 23 18 20 127 21.17Montgomery alulates SSTot and SSTreat by hand, andthen �nds SSErr by means of the sum of squares identity,SSTot = SSTreat + SSErrOne-Way ANOVASoure df SS MS F P -valueFator 3 382.79 127.60 19.61 0.000Error 20 130.17 6.51Total 23 512.96Beause of the very low P -value, there is strong evi-dene for the alternative hypothesis that the hardwoodonentration a�ets the strength of the paper.
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Suppose next that we want to investigate whether
y = β0 + β1x + β2x

2 + ǫwhere
Eǫ = 0 and Var ǫ = σ2so that

Ey = β0 + β1x + β2x
2 and Var y = σ2is a reasonable model for the tensile strength data.
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Week 3) Statistial inferene in quality ontrol and improvementPart d) Linear regression modelsData are n independent observations of a (k + 1)-tuple
y, x1, . . . , xkThe model is

y = β0 + β1x1 + β2x2 + · · · + βkxk + ǫwhere
E[y] = β0 + β1x1 + β2x2 + · · · + βkxkVar y = Var ǫ = σ2There are p = k + 1 regression oe�ients in the model.The o-variates (regressors, preditor variables)

x1, . . . , xkmay be random but need not be.In the former ase, the error ǫ must be independent ofthe o-variates x1, . . . , xk, and the the statistial analy-sis is onditional on the observed xi's.This is typially not the ase in quality improvment,where most often the experiments are designed.There may be all sorts of dependene within the xi's.� OH 19 �



In matrix notation, the model may be written
y = Xβ + ǫwhere

y =









y1

y2...
yn









is the olumn vetor of data,
X =









1 x11 x12 · · · x1k

1 x21 x22 · · · x2k... ... ... ...
1 xn1 xn2 · · · xnk









is the design matrix,
β =









β0

β1...
βk









represents the regression oe�ients,
ǫ =









ǫ1

ǫ2...
ǫn









represents the measurement errors.
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The least squares estimator of β is
β̂ = (X ′X)

−1
X ′yThis is the solution to the normal equations

(X ′X) β̂ = X ′yThe �tted regression model is
ŷ = Xβ̂The (n × 1) vetor of residuals is

e = y − ŷ
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Estimating σ2. The residual or error sum of squaresis SSErr = e′e = (y − ŷ)′ (y − ŷ)

= · · · = y′y − β̂′X ′yThere are n−p degrees of freedom assoiated with SSErrand
s2 = MSErr =

SSErr
n − pestimates σ2 without bias.Under the normal assumption, i.e,

y ∼ N (β0 + β1x1 + β2x2 + · · · + βkxk, σ
2
)we have

(n − p)s2

σ2
∼ χ2(n − p)
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Properties of the estimators.
Eβ̂ = βCov β̂ = E

[

(

β̂ − β
)(

β̂ − β
)′
]

= σ2 (X ′X)
−1

Under the normal assumption, β̂ is multivariate normal.Further, β̂ and s2 are independent.Denote by cjj the jth diagonal element of (X ′X)−1.We have
β̂j − βj

σ
√

cjj
∼ N(0, 1)so, by the independene,

β̂j − βj

s
√

cjj
∼ t(n − p)Con�dene intervals and tests on single regression oef-�ients are based on this fat.
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The test for signi�ane of regression is
H0 : β1 = · · · = βk = 0vs

H1 : βj 6= 0 for at least one jThe total sum of squaresSSTot = (y − ȳ)′ (y − ȳ) = y′y − nȳ2where
ȳ =





ȳ...̄
y



 = ȳ 1may be partitioned intoSSTot = SSReg + SSErrwhere SSErr is the already de�ned error sum of squaresand SSReg = β̂′X ′y − nȳ2is the regression sum of squares.The assoiated partition of the number of degrees offreedom is
n − 1 = k + (n − p)
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The test statisti
F0 =

MSRegMSErr =
SSReg/kSSErr/(n − p)has under H0 an F (k, n − p)-distribution.The rule is to rejet H0 if

F0 > Fα,k,n−pEquivalently, if the P -value is less than α.
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The oe�ient of multiple determination
R2 =

SSRegSSTot = 1 − SSErrSSTotmeasures the amount of redution in the variability ofthe data y1, . . . , yn obtained by the regression model.Adding a variable to the model will allways inrease R2.Therefore R2 is not a very good measure of the model�t.The adjusted R2 statisti
R2adj = 1 − MSErrMSTot = 1 −

(

n − 1

n − p

)

(1 − R2)is a better measure of the �t of the model, sine addingunneessary variables not seldom dereases its value.
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Tests on groups of oe�ients.It is also possible to partition the vetor of regressionoe�ients
β =

[

β1

β2

]

where β1 is r × 1 and β2 is (p − r) × 1, and to test
H0 : β1 = 0 vs H1 : β1 6= 0The model is then written as

y = X1β1 + X2β2 + ǫwhere X1 represents the olumns of X assoiated with
β1 and similarly for X2.The regression sum of squares for the non-onstant vari-ables x1, . . . , xk isSSReg = SSTot − SSError = β̂′X ′y − nȳ2The regression sum of squares for all p variables isSSReg(β) = β̂′X ′yThe assoiated number of degrees of freedom is p.
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The redued model, valid under H0, is
y = X2β2 + ǫThe least squares estimator of β2 is

β̂2 = (X ′
2X2)

−1
X ′

2yin the redued model.The regression sum of squares for the variables assoi-ated with β2 is SSReg(β2) = β̂′

2
X ′

2yIt has p − r degrees of freedom.The regression sum of squares due to β1 given that β2already is in the model isSSReg(β1|β2) = SSReg(β) − SSReg(β2)This sum of squares has r degrees of freedom.Clearly, SSReg(β) = SSReg(β2) + SSReg(β1|β2)Hene SSReg(β1|β2) is the inrease in the regression sumof squares due to inluding the variables assoiated with
β1 in the model.
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Now, MSReg(β1|β2) =
SSReg(β1|β2)

ris independent of MSError and unbiased for σ2 under thenull hypothesis H0 : β1 = 0.Thus, H0 may be tested by the statisti
F0 =

MSReg(β1|β2)MSError ∼ F (r, n − p)The rule is to rejet H0 when F0 > Fα,r,n−p.Rejetion means that H1 : β1 6= 0 is aepted, whih isto say that at least one of the variables assoiated to β1signi�antly ontributes to the regression model.
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