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Week 3) Statisti
al inferen
e in quality 
ontrol and improvementPart a) Single-sample 
aseLet x1, . . . , xn be i.i.d observations of some random vari-able X with mean
EX = µand varian
e VarX = σ2The sample mean x̄ and varian
e s2 are unbiased esti-mators of the mean µ and the varian
e σ2, respe
tively,
Ex̄ = µ

Es2 = σ2Re
all also the 
.l.t, implying
x̄ − µ

σ̂/
√

n
≈ x̄ − µ

σ/
√

n

ap∼ N(0, 1)where σ̂ is some natural estimate of σ.Note that
√Var x̄ = σ/

√
noften is referred to as the standard error of the mean.Its natural estimator is σ̂/

√
n.� OH 1 �



The 
ase X ∼ Ber(p).Here,
µ = p and σ2 = p(1 − p)Moreover, f =
∑

i xi is the frequen
y of �positives�, and
p̂ = x̄ =

f

nestimates p without bias.The �natural� estimator of the standard deviation is
σ̂ =

√

p̂(1 − p̂)Suppose we want to test
H0 : p ≥ p0 vs H1 : p < p0It is natural to reje
t H0 when f ≤ c, where c is deter-mined from the requirement

P (f ≤ c|p0) ≤ α and P (f ≤ c + 1|p0) > αsin
e f has a dis
rete distribution.The power of the test is
1 − β = P (f ≤ c|p1) for p1 < p0
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In Chapter 15, Montgomery introdu
es typa-A andtype-B 
al
ulations of the probability P (f ≤ c|p).We now add a �type-C 
al
ulation� based on the normalapproximation of the Binomial distribution,
P (f ≤ c|p) = Φ

(

c + 0.5 − np
√

np(1 − p)

)

This is appropriate when n is large and p is neither toosmall or too large.The two-sided test
H0 : p = p0 vs H1 : p 6= p0is treated similarly. Reje
t H0 when f ≤ c1 or f ≥ c2,where

P (f ≤ c1|p0) ≈ P (f ≥ c2|p0) ≈
α

2A type-C 
al
ulation leads to
c1 ≈ np0 − 0.5 − zα/2

√

np0(1 − p0)

c2 ≈ np0 + 0.5 + zα/2

√

np0(1 − p0)
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The half-number 
orre
tion is often omitted.If so, the rule is to reje
t H0 : p = p0 when |z| > zα/2,where
z =

p̂ − p0
√

p0(1 − p0)/n

ap∼ N(0, 1)

A 
orresponding 
on�den
e interval for p 
onsists of all
p0 that are not reje
ted by the the test. That is, all p0su
h that

−zα/2 ≤
p̂ − p0

√

p0(1 − p0)/n
≤ zα/2It is somewhat easier to use as starting point the fa
tthat the event

−zα/2 ≤
p̂ − p0

√

p̂(1 − p̂)/n
≤ zα/2o

urs with probability ≈ 1 − α, and rearrange to

p̂ − zα/2

√

p̂(1 − p̂)/n ≤ p ≤ p̂ + zα/2

√

p̂(1 − p̂)/nwhi
h not seldom is written
p = p̂ ± zα/2

√

p̂(1 − p̂)/n
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The 
ase X ∼ N(µ, σ2).Here,
x̄ − µ

σ/
√

n
∼ N(0, 1)

(n − 1)s2

σ2
∼ χ2(n − 1)It follows from the fa
t that x̄ and s2 are independentthat

x̄ − µ

s/
√

n
∼ t(n − 1)

Suppose we want to test
H0 : µ ≤ µ0 vs H1 : µ > µ0It is natural to reje
t H0 when x̄ > c, where c is deter-mined from the requirement

x̄ − µ0

σ/
√

n
> zα ⇔ x̄ > µ0 + zασ/

√
nif σ is known, and from

x̄ − µ0

s/
√

n
> tα,n−1 ⇔ x̄ > µ0 + tα,n−1s/

√
nif σ is unknown and must be estimated.
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The 
orresponding 
on�den
e interval 
onsists of all µ0that are not reje
ted by the test. That is, µ is in the
on�den
e interval if̄
x − µ

s/
√

n
≤ tα,n−1Clearly, this holds true if, and only if,

µ ≥ x̄ − tα,n−1s/
√

nConsider next the test of
H0 : µ = µ0 vs H1 : µ 6= µ0The rule is to reje
t if |t| > tα/2,n−1, where

t =
x̄ − µ0

s/
√

nIf σ is known, repla
e s and tα/2,n−1 by σ and zα/2,respe
tively. In this 
ase we write z instead of t.The 
orresponding 
on�den
e interval 
onsists of all µ0that are not reje
ted by the test. That is, all µ su
hthat
−tα/2,n−1 ≤

x̄ − µ

s/
√

n
≤ tα/2,n−1Rearrange.
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The test of
H0 : σ ≥ σ0 vs H1 : σ < σ0reje
ts when

(n − 1)s2

σ2
0

< χ2
1−α,n−1 ⇔ s < σ0

√

χ2
1−α,n−1

n − 1The 
orresponding 
on�den
e interval 
onsists of all σ0that are not reje
ted by the test, i.e, all σ satisfying
σ ≤ s

√

n − 1

χ2
1−α,n−1If the alternative is two-sided, reje
t H0 : σ = σ0 when

(n − 1)s2

σ2
0

< χ2
1−α/2,n−1 or (n − 1)s2

σ2
0

> χ2
α/2,n−1The 
orresponding 
on�den
e interval 
onsists of all σsatisfying

χ2
1−α/2,n−1 ≤

(n − 1)s2

σ2
≤ χ2

α/2,n−1Rearrange.
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P -value.De�nition. The P -value is the smallest level of signi�-
an
e that would lead to reje
tion of the null hypothesis.Example. Normal data. The P -value of the test of
H0 : µ ≤ µ0 vs H1 : µ > µ0is P (T > t), where T ∼ t(n − 1) and

t =
x̄ − µ0

s/
√

nAlso note that many statisti
ians prefer to write the nullhypothesis as
H0 : µ = µ0 instead of H0 : µ ≤ µ0sin
e the level is 
al
ulated under the assumption thatthe true mean is µ0. This applies of 
ourse also to similartests against one-sided alternatives.Example. Bernoulli data. The P -value of the test of

H0 : p = p0 vs H1 : p 6= p0is 2P (Z > |z|), where Z ∼ N(0, 1) and
z =

p̂ − p0
√

p0(1 − p0)/n
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Week 3) Statisti
al inferen
e in quality 
ontrol and improvementPart b) The two-sample 
aseempirism theory1st sample n1 x̄1 s2
1 µ1 σ2

12nd sample n2 x̄2 s2
2 µ2 σ2

2The samples must be independent. They may be fromthe same population, but need not be. Typi
ally, theyare from di�erent subpopulations of some population.If data are normal,
s2

1/σ
2
1

s2
2/σ

2
2

∼ F (n1 − 1, n2 − 1)Thus, we may reje
t
H0 : σ1 = σ2 vs H1 : σ1 6= σ2at level α, if

s2
1

s2
2

< f1−α/2,n1−1,n2−1 or s2
1

s2
2

> fα/2,n1−1,n2−1Note that the level should be high (typi
ally 10% or even20%), if the test is used to determine whether one 
anassume that σ1 = σ2 in a subsequent analysis of thedi�eren
e µ1 − µ2. � OH 9 �



Normal data. The 
ase σ1 = σ2 = σ.The pooled sample varian
e,
s2
P =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2is an unbiased estimator of σ2. Moreover,
(n1 + n2 − 2)s2

P

σ2
∼ χ2(n1 + n2 − 2)Now note that̄

x1 − x̄2 − (µ1 − µ2)

σ
√

1/n1 + 1/n2

∼ N(0, 1)and, sin
e the sample varian
es are independent of thesample means,
x̄1 − x̄2 − (µ1 − µ2)

s
√

1/n1 + 1/n2

∼ t(n1 + n2 − 2)Tests and 
on�den
e intervals are based on theese fa
ts.Note that there are slightly di�erent pro
edures depend-ing on whether σ is known or not.
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Normal data. The 
ase σ1 6= σ2.Here,
x̄1 − x̄2 − (µ1 − µ2)
√

σ2
1/n1 + σ2

2/n2

∼ N(0, 1)and it 
an be shown that
x̄1 − x̄2 − (µ1 − µ2)
√

s2
1/n1 + s2

2/n2

ap∼ t(ν)where ν is the integer part of
(

s2
1/n1 + s2

2/n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1(There is a typo in Formula (4.55) on p 134.)Tests and 
on�den
e intervals are based on theese fa
ts.
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Bernoulli data.Here, fi = nix̄i are the frequen
ies of positives in thetwo samples, and
p̂i =

fi

niis an unbiased estimate of the proportion pi of positivesin the ith sample.The type-C test statisti
 for testing the null hypothesis
H0 : p1 = p2 = pis

z =
p̂1 − p̂2

√

p̂(1 − p̂) (1/n1 + 1/n2)

ap∼ N(0, 1)where
p̂ =

f1 + f2

n1 + n2
=

n1p̂1 + n2p̂2

n1 + n2is unbiased for the under H0 
ommon proportion p.Two-sided 
on�den
e intervals for p1 − p2 typi
ally use
−zα/2 ≤

p̂1 − p̂2 − (p1 − p2)
√

p̂1(1 − p̂1)/n1 + p̂2(1 − p̂2)/n2

≤ zα/2as starting point. Single-sided 
on�den
e statements useonly one of the inequalities and α/2 should be repla
edby α. � OH 12 �



Week 3) Statisti
al inferen
e in quality 
ontrol and improvementPart 
) Analysis of varian
eThe Paper Tensile Strength ExperimentTensile strength of paper (psi)Observation no j
x i 1 2 3 4 5 6 nȳi ȳi0.05 1 7 8 15 11 9 10 60 10.000.10 2 12 17 13 18 19 15 94 15.670.15 3 14 18 19 17 16 18 102 17.000.20 4 19 25 22 23 18 20 127 21.17See Se
tion 4.5.1 on p 140.This is a so 
alled single-fa
tor experiment.
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Data and model:
yij = µi + ǫij = µ + τi + ǫijfor i = 1, . . . , a and j = 1, . . . , n, where

µ =
1

a

∑

i

µi and τi = µi − µNote
∑

i

τi = 0

We assume that the ǫij's are i.i.d N(0, σ2), i.e that the
yij's are independent and

yij ∼ N(µ + τi, σ2)

The null hypothesis of no e�e
t
H0 : τ1 = · · · = τa = 0is to be tested vs the alternative

H1 : τi 6= 0 for at least one i
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The total variation in the data is des
ribed by the totalsum of squaresSSTot =
∑

i

∑

j

(yij − ȳ)2

=
∑

i

∑

j

(yij − ȳi)
2 + n

∑

i

(ȳi − ȳ)2

= SSErr + SSTreatThis is the sum of squares identity.The asso
iated degrees of freedom aredfTot = an − 1dfErr = a(n − 1)dfTreat = a − 1Note dfTot = dfErr + dfTreatThe idea of an analysis of varian
e is to relate (or 
om-pare) the within groups variation SSErr/dfErr and thebetween groups variation SSTreat/dfTreat.If we divide an SS with its df, we get a mean sum ofsquares, denoted MS.
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It is easy to see that
s2 = MSErr =

SSErr
a(n − 1)is unbiased for σ2. Moreover,

a(n − 1) s2

σ2
∼ χ2(a(n − 1))It is somewhat harder to see that

ESSTreat = (a − 1) σ2 + n
∑

i

τ 2
i

Thus, under H0, MSTreat is unbiased for σ2.Moreover, MSTreat is independent of MSErr, and
(a − 1)MSTreat

σ2
∼ χ2(a − 1)It follows that

F0 =
MSTreatMSErr ∼ F (a − 1, a(n − 1))and that we may reje
t the null hypothesis of no e�e
t,when

F0 > Fα,a−1,a(n−1)The result of an ANOVA is most often summarized inan ANOVA table. � OH 16 �



The Paper Tensile Strength Experiment.See Exanple 4.12 on p 147.Tensile strength of paper (psi)Observation no j
x i 1 2 3 4 5 6 nȳi ȳi0.05 1 7 8 15 11 9 10 60 10.000.10 2 12 17 13 18 19 15 94 15.670.15 3 14 18 19 17 16 18 102 17.000.20 4 19 25 22 23 18 20 127 21.17Montgomery 
al
ulates SSTot and SSTreat by hand, andthen �nds SSErr by means of the sum of squares identity,SSTot = SSTreat + SSErrOne-Way ANOVASour
e df SS MS F P -valueFa
tor 3 382.79 127.60 19.61 0.000Error 20 130.17 6.51Total 23 512.96Be
ause of the very low P -value, there is strong evi-den
e for the alternative hypothesis that the hardwood
on
entration a�e
ts the strength of the paper.
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Suppose next that we want to investigate whether
y = β0 + β1x + β2x

2 + ǫwhere
Eǫ = 0 and Var ǫ = σ2so that

Ey = β0 + β1x + β2x
2 and Var y = σ2is a reasonable model for the tensile strength data.
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Week 3) Statisti
al inferen
e in quality 
ontrol and improvementPart d) Linear regression modelsData are n independent observations of a (k + 1)-tuple
y, x1, . . . , xkThe model is

y = β0 + β1x1 + β2x2 + · · · + βkxk + ǫwhere
E[y] = β0 + β1x1 + β2x2 + · · · + βkxkVar y = Var ǫ = σ2There are p = k + 1 regression 
oe�
ients in the model.The 
o-variates (regressors, predi
tor variables)

x1, . . . , xkmay be random but need not be.In the former 
ase, the error ǫ must be independent ofthe 
o-variates x1, . . . , xk, and the the statisti
al analy-sis is 
onditional on the observed xi's.This is typi
ally not the 
ase in quality improvment,where most often the experiments are designed.There may be all sorts of dependen
e within the xi's.� OH 19 �



In matrix notation, the model may be written
y = Xβ + ǫwhere

y =









y1

y2...
yn









is the 
olumn ve
tor of data,
X =









1 x11 x12 · · · x1k

1 x21 x22 · · · x2k... ... ... ...
1 xn1 xn2 · · · xnk









is the design matrix,
β =









β0

β1...
βk









represents the regression 
oe�
ients,
ǫ =









ǫ1

ǫ2...
ǫn









represents the measurement errors.
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The least squares estimator of β is
β̂ = (X ′X)

−1
X ′yThis is the solution to the normal equations

(X ′X) β̂ = X ′yThe �tted regression model is
ŷ = Xβ̂The (n × 1) ve
tor of residuals is

e = y − ŷ
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Estimating σ2. The residual or error sum of squaresis SSErr = e′e = (y − ŷ)′ (y − ŷ)

= · · · = y′y − β̂′X ′yThere are n−p degrees of freedom asso
iated with SSErrand
s2 = MSErr =

SSErr
n − pestimates σ2 without bias.Under the normal assumption, i.e,

y ∼ N (β0 + β1x1 + β2x2 + · · · + βkxk, σ
2
)we have

(n − p)s2

σ2
∼ χ2(n − p)
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Properties of the estimators.
Eβ̂ = βCov β̂ = E

[

(

β̂ − β
)(

β̂ − β
)′
]

= σ2 (X ′X)
−1

Under the normal assumption, β̂ is multivariate normal.Further, β̂ and s2 are independent.Denote by cjj the jth diagonal element of (X ′X)−1.We have
β̂j − βj

σ
√

cjj
∼ N(0, 1)so, by the independen
e,

β̂j − βj

s
√

cjj
∼ t(n − p)Con�den
e intervals and tests on single regression 
oef-�
ients are based on this fa
t.
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The test for signi�
an
e of regression is
H0 : β1 = · · · = βk = 0vs

H1 : βj 6= 0 for at least one jThe total sum of squaresSSTot = (y − ȳ)′ (y − ȳ) = y′y − nȳ2where
ȳ =





ȳ...̄
y



 = ȳ 1may be partitioned intoSSTot = SSReg + SSErrwhere SSErr is the already de�ned error sum of squaresand SSReg = β̂′X ′y − nȳ2is the regression sum of squares.The asso
iated partition of the number of degrees offreedom is
n − 1 = k + (n − p)
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The test statisti

F0 =

MSRegMSErr =
SSReg/kSSErr/(n − p)has under H0 an F (k, n − p)-distribution.The rule is to reje
t H0 if

F0 > Fα,k,n−pEquivalently, if the P -value is less than α.
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The 
oe�
ient of multiple determination
R2 =

SSRegSSTot = 1 − SSErrSSTotmeasures the amount of redu
tion in the variability ofthe data y1, . . . , yn obtained by the regression model.Adding a variable to the model will allways in
rease R2.Therefore R2 is not a very good measure of the model�t.The adjusted R2 statisti

R2adj = 1 − MSErrMSTot = 1 −

(

n − 1

n − p

)

(1 − R2)is a better measure of the �t of the model, sin
e addingunne
essary variables not seldom de
reases its value.
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Tests on groups of 
oe�
ients.It is also possible to partition the ve
tor of regression
oe�
ients
β =

[

β1

β2

]

where β1 is r × 1 and β2 is (p − r) × 1, and to test
H0 : β1 = 0 vs H1 : β1 6= 0The model is then written as

y = X1β1 + X2β2 + ǫwhere X1 represents the 
olumns of X asso
iated with
β1 and similarly for X2.The regression sum of squares for the non-
onstant vari-ables x1, . . . , xk isSSReg = SSTot − SSError = β̂′X ′y − nȳ2The regression sum of squares for all p variables isSSReg(β) = β̂′X ′yThe asso
iated number of degrees of freedom is p.

� OH 27 �



The redu
ed model, valid under H0, is
y = X2β2 + ǫThe least squares estimator of β2 is

β̂2 = (X ′
2X2)

−1
X ′

2yin the redu
ed model.The regression sum of squares for the variables asso
i-ated with β2 is SSReg(β2) = β̂′

2
X ′

2yIt has p − r degrees of freedom.The regression sum of squares due to β1 given that β2already is in the model isSSReg(β1|β2) = SSReg(β) − SSReg(β2)This sum of squares has r degrees of freedom.Clearly, SSReg(β) = SSReg(β2) + SSReg(β1|β2)Hen
e SSReg(β1|β2) is the in
rease in the regression sumof squares due to in
luding the variables asso
iated with
β1 in the model.
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Now, MSReg(β1|β2) =
SSReg(β1|β2)

ris independent of MSError and unbiased for σ2 under thenull hypothesis H0 : β1 = 0.Thus, H0 may be tested by the statisti

F0 =

MSReg(β1|β2)MSError ∼ F (r, n − p)The rule is to reje
t H0 when F0 > Fα,r,n−p.Reje
tion means that H1 : β1 6= 0 is a

epted, whi
h isto say that at least one of the variables asso
iated to β1signi�
antly 
ontributes to the regression model.
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