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Week 3) Statistical inference in quality control and improvement

Part a) Single-sample case

Let xy, ..., x, beii.d observations of some random vari-
able X with mean

EX =yp
and variance

Var X = o°

2

The sample mean T and variance s° are unbiased esti-

mators of the mean p and the variance o2, respectively,
Ex=yu
Es* = o*

Recall also the c.l.t, implying

j—,u Q_j—ﬂap

NI

where ¢ 1s some natural estimate of o.

N(0,1)

Note that
VVarz = o/v/n

often is referred to as the standard error of the mean.
[ts natural estimator is 6 /+/n.
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The case X ~ Ber(p).

Here,

2

p=p and o®=p(l—p)

Moreover, f = > z; is the frequency of “positives”, and

A

p:j;‘:

S |~

estimates p without bias.

The “natural” estimator of the standard deviation is
o =+/p(1—p)
Suppose we want to test

Hy:p=>=po vs Hy:p<pg

It is natural to reject Hy when f < ¢, where ¢ is deter-
mined from the requirement

P(f <clpp) <a and P(f<c+1lpy) >«
since f has a discrete distribution.

The power of the test is

1—=8=P(f <clp) for p1<po
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In Chapter 15, Montgomery introduces typa-A and
type-B calculations of the probability P(f < ¢|p).

We now add a “type-C calculation” based on the normal
approximation of the Binomial distribution,

c+ 0.0 — np)
vnp(l —p)

This is appropriate when n is large and p is neither too
small or too large.

PU§6m¢<

The two-sided test

Hy:p=py vs Hi:p+#py

is treated similarly. Reject Hy when f < ¢y or f > co,
where

P(f < cilpo) = P(f > calpo) ~

b | 9

A type-C calculation leads to

c1 ~npy— 0.5 — za/z\/npg(l — o)
co =~ npg+ 0.5 + za/g\/npg(l — o)
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The half-number correction is often omitted.

[f so, the rule is to reject Hy : p = po when |z| > 2 /2,
where

P — Po

V(L= po)/n

A corresponding confidence interval for p consists of all
po that are not rejected by the the test. That is, all p
such that

~ N(0, 1)

Z

P — Po
— a2 < < a2

Vool —po)/n ~

It is somewhat easier to use as starting point the fact
that the event

P —Po
—Zaj2 S —= —— < 24/9
V(1 —p)/n
occurs with probability ~ 1 — «, and rearrange to
]3 - Zoz/Q\/]a(l - ﬁ)/n <p< ]5 + Za/Q\/]a(l - ﬁ)/n

which not seldom i1s written

p=p=x Z@/Z\/p<1 —p)/n
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The case X ~ N(u,o?).

Here,

T —p
N N(0,1)
(n —1)s

9 ~ X2<n R 1)

o

[t follows from the fact that z and s* are independent

that

a’;_

v
s/\/n

~t(n—1)

Suppose we want to test
Ho:p<pyg vs Hy:pu>

It is natural to reject Hy when & > ¢, where c is deter-
mined from the requirement

T L e E >+ 20N

a/\/n
if o is known, and from

T — [
s/v/n

if o 1s unknown and must be estimated.

> toz,n—l <~ x > o toz,n—lg/\/ﬁ
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The corresponding confidence interval consists of all py
that are not rejected by the test. That is, u is in the
confidence interval if
LBy
s/v/m

a,n—1

Clearly, this holds true if, and only if,
I3 > T — toz,n—ls/\/ﬁ

Consider next the test of

Hy:p=py vs Hy:p#
The rule is to reject if [t| > 2,/9,—1, where

If o is known, replace s and t,/2,-1 by o and z,,
respectively. In this case we write z instead of ¢.

t

The corresponding confidence interval consists of all py
that are not rejected by the test. That is, all p such
that

T —
_toz/Z,n—l < S/\/ﬁ < ta/Q,n—l

Rearrange.
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The test of
Hy:0>090 vs H;:0 <oy

rejects when

2
(n — 1>52 p X1—an—1
2 < Xl—a,n—l A s < OO\/ P

o n—1

The corresponding confidence interval consists of all o
that are not rejected by the test, i.e, all o satistying

n—1
o<s —
Xl—a,n—l

If the alternative is two-sided, reject Hy : 0 = 0¢ when

(n —1)s (n —1)s
o2 < X%—Oz/ln—l Or o2 > X?x/Q,n—l
0 0

The corresponding confidence interval consists of all o
satisfying

(n —1)s

p p
X1—a/2,n—1 < 2 < Xa/2,n—1

Rearrange.

— OH 7 —



P-value.

Definition. The P-value is the smallest level of signifi-
cance that would lead to rejection of the null hypothesis.

Example. Normal data. The P-value of the test of

Ho:p<po vs Hi:p> pyg
is P(T' > t), where T' ~ t(n — 1) and

Also note that many statisticians prefer to write the null
hypothesis as

t

Hy . = po instead of Hy : p < g

since the level is calculated under the assumption that
the true mean is po. This applies of course also to similar
tests against one-sided alternatives.

Example. Bernoulli data. The P-value of the test of

Hy:p=po vs Hi:p#pg
is 2P(Z > |z|), where Z ~ N(0,1) and
P — Po

V(- po)/n

Z
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Week 3) Statistical inference in quality control and improvement

Part b) The two-sample case

empirism  theory

Ist sample n; 73 3% (1 O'%

2nd sample no Ty S5 o 05

The samples must be independent. They may be from
the same population, but need not be. Typically, they
are from different subpopulations of some population.

If data are normal,
2/ 2
s1/01

NF(nl—l,n2—1>
53/ 05

Thus, we may reject
Hy:01=09 vs Hi:01# 09

at level a, if
2 2

S1 S1
2 < fi—a/zm—1np-1 OF 2 > faj2nm-1n-1

Note that the level should be high (typically 10% or even
20%), if the test is used to determine whether one can
assume that o7 = o9 in a subsequent analysis of the
difference p — po.
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Normal data. The case 01 = 0y = 0.

The pooled sample variance,

(n1 —1)s7 + (ny — 1)s3
niy+ ng — 2

2 =

is an unbiased estimator of o?. Moreover,

(n1 +ng — 2)s% N
2

XQ(nl + ng — 2)
%

Now note that
T1— Ty — (p1 — pi2)
0\/1/n1 + 1/712

and, since the sample variances are independent of the
sample means,

~ N(0,1)

T1— Ty — (1 — pho)
sv/1/ny +1/ny

Tests and confidence intervals are based on theese facts.

~ t(ny + ng — 2)

Note that there are slightly different procedures depend-
ing on whether o is known or not.
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Normal data. The case o, # o».

Here,

L1 — ;CQ - (,ulz_ /LQ) N N(O, 1)
\/al/nl + 05 /N9
and it can be shown that
\/sl/nl + s5/M2
where v is the integer part of
p
(s%/nl + S%/ﬂz)
(st/m)” | (s3/ma)"

n1—1 TLQ—l

(There is a typo in Formula (4.55) on p 134.)

Tests and confidence intervals are based on theese facts.
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Bernoulli data.

Here, f; = n;x; are the frequencies of positives in the
two samples, and

4k

Pi
n;

is an unbiased estimate of the proportion p; of positives
in the ¢th sample.

The type-C test statistic for testing the null hypothesis

Hy:pir=p2=p
1S
Z=—= {?1 _ ~ N(0,1)
V(1 —=p)(1/ny +1/ny)

where

b= fi+ /o _ n1p1 + NoPo
ny -+ Ny ny -+ N9

is unbiased for the under Hy common proportion p.

Two-sided confidence intervals for p; — py typically use
< p1— P2 — (p1 — p2)
—Ra/2 = = ~ ~
VP11 = p1)/ny + pa(1 — pa)/ns
as starting point. Single-sided confidence statements use

only one of the inequalities and a;/2 should be replaced
by a.

< o2
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Week 3) Statistical inference in quality control and improvement

Part c) Analysis of variance

The Paper Tensile Strength Experiment
Tensile strength of paper (psi)

Observation no j

r i 1 2 3 4 5 6ny U

005 1 7 8 15 11 9 10 60 10.00
0.10 2 12 17 13 18 19 15 94 15.67
0.15 3 14 18 19 17 16 18 102 17.00
020 4 19 25 22 23 18 20 127 21.17

See Section 4.5.1 on p 140.

This is a so called single-factor experiment.
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Data and model:
Yij = Wi T €5 = b+ 7 + €
fore=1,...,aand y =1,...,n, where

|
p=— pi and 7 =p—p

Note

ZTZ':O

We assume that the €;;’s are i.i.d N(0, 02), i.e that the
y;; s are independent and

yii ~ N(p+ 75, (72)

The null hypothesis of no effect
HQZle"':Ta:O
is to be tested vs the alternative

H; : 7; # 0 for at least one ¢
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The total variation in the data is described by the total
sum of squares

SSTot = Z Z(yz‘j —g)
= Z Z(ym — gi) + HZ@@ —7)°

= SOEr + OOTyeat
This is the sum of squares identity.
The associated degrees of freedom are
dftyt = an — 1
dfg = a(n — 1)
df et = a — 1
Note
dity; = dife + diTreat
The idea of an analysis of variance is to relate (or com-

pare) the within groups variation SSg;,/dfg, and the
between groups variation SSyeat/dfTyeat-

If we divide an SS with its df, we get a mean sum of
squares, denoted MS.
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[t is easy to see that

SSR
32 — MSEI"I" — &
a(n —1)
is unbiased for o2. Moreover,
a(n —1) s 5
—— ~ X (a(ln = 1))

It 1s somewhat harder to see that

ESStyent = (a — 1) o +n27

Thus, under Hy, MStyeq; is unbiased for o

Moreover, MSyeqt 18 independent of MSg,,, and
(CL - 1) MSTreat

2
o2 X (a R 1>
[t follows that
MS rea
Fy = MSTEHt ~ Fla—1,a(n—1))

and that we may reject the null hypothesis of no effect,
when

FO > Fa,a—l,a(n—l)

The result of an ANOVA is most often summarized in

an ANOVA table.
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The Paper Tensile Strength Experiment.
See Exanple 4.12 on p 147.

Tensile strength of paper (psi)

Observation no j

7 8 15 11 9 10 60 10.00
12 17 13 18 19 15 94 15.67
14 18 19 17 16 18 102 17.00
19 25 22 23 18 20 127 21.17

x
0.05
0.10
0.15
0.20

= QO DN ) .

Montgomery calculates SSty; and SStweas by hand, and
then finds SSg,, by means of the sum of squares identity,

SSTot — SSTreat + SSErr

One-Way ANOVA
Source df SS MS F P-value
Factor 3 382.79 127.60 19.61  0.000
Error 20 130.17  6.51
Total 23 512.96

Because of the very low P-value, there is strong evi-
dence for the alternative hypothesis that the hardwood
concentration affects the strength of the paper.
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Suppose next that we want to investigate whether
y = Po+ Pz + Box’ + e

where
Fe=0 and Vare=o"

so that

Ey = By + fix + Box* and Vary = o*

is a reasonable model for the tensile strength data.
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Week 3) Statistical inference in quality control and improvement

Part d) Linear regression models

Data are n independent observations of a (k 4+ 1)-tuple

Yy, r1,...,Tk

The model is

y = Bo+ Pix1+ Paza + - + Brwy + €

where

Ely] = By + Biw1 + oz + - - + Bray

Vary = Vare = o*

There are p = k+ 1 regression coefficients in the model.
The co-variates (regressors, predictor variables)

Tiy. .., Tk
may be random but need not be.

In the former case, the error ¢ must be independent of
the co-variates x1, ..., x;, and the the statistical analy-
sis 1s conditional on the observed z;’s.

This is typically not the case in quality improvment,
where most often the experiments are designed.

There may be all sorts of dependence within the x;’s.
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In matrix notation, the model may be written

y=XpB+e
where
Y1
Y = y2 is the column vector of data,
| Yn _
L zy1 212 -+ a1
1 o1 oy -+ Lok . : :
X = oo _ is the design matriz,
_1 Inl Tp2 - xnk_
Do
b . .
B = | | represents the regression coefficients,
| Bk
e
€2
€ = | ° | represents the measurement errors.
ETL
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The least squares estimator of 3 is

B=(X'X)" X'y
This is the solution to the normal equations
(X'X)B=X"y
The fitted regression model is
g=Xp
The (n x 1) vector of residuals is

e=y—y

— OH 21 —



2

Estimating o°. The residual or error sum of squares

1S
SSErr — ele — (y o g)/ (y o g)
= =y'y—FX'y

There are n — p degrees of freedom associated with SSg,,
and

SSErr
n—p

82 = MSEH =

estimates o2 without bias.

Under the normal assumption, i.e,

Y~ N (B + Brzr + Bows + - + By, 07)

we have

— OH 22 —



Properties of the estimators.
EB =0
covp-£((5-8)(5-p) | -o*x'x)"

Under the normal assumption, B is multivariate normal.
Further, B and s are independent.
Denote by ¢;; the jth diagonal element of (X'X)"!
We have

B = B;

~ N(0,1)
0./Cj;
so, by the independence,
5= b, ~ t(n — p)

S+/Cjj

Confidence intervals and tests on single regression coef-
ficients are based on this fact.
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The test for significance of regression is
Hgiﬁlz"':ﬁk:O

VS

Hy: B # 0 for at least one j

The total sum of squares
SStor = (Y —9) (y — §) = y'y — ny”

where

|
Nayg
-

g:

may be partitioned into
SSTot — SSReg + SSErr

where SSg,;, 18 the already defined error sum of squares
and

SSReg — B,X,y — ngQ
is the regression sum of squares.

The associated partition of the number of degrees of
freedom is

n—1=k+(n—p)
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The test statistic
B MSReg B SSReg/k:

Fo= _
! MSErr SSErr/<n _ p>

has under Hy an F'(k,n — p)-distribution.
The rule is to reject Hy if
FO > Fa,k,n—p

Equivalently, if the P-value is less than a.
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The coefficient of multiple determination

_ SSReg —1_ SSErr
SSTot SSTot

measures the amount of reduction in the variability of
the data vy, ..., y, obtained by the regression model.

R2

Adding a variable to the model will allways increase R?.
Therefore R? is not a very good measure of the model

fit.

The adjusted R? statistic
MSE n—1
Ry=1——"=1-— 1 — R?
ad]j MSTot (n . p) ( )

is a better measure of the fit of the model, since adding
unnecessary variables not seldom decreases its value.
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Tests on groups of coefficients.

It is also possible to partition the vector of regression

coefficients
| B
f= [52]

where 3, is r x 1 and B, is (p — r) x 1, and to test
Hy:8,=0 vs H;:8,#0
The model is then written as
y=X10,+ X0, +e€

where X1 represents the columns of X associated with
B3, and similarly for Xo.

The regression sum of squares for the non-constant vari-
ables x1,...,x}; 1s

SSheq = SS1or — SShumer = B' Xy — ny’
The regression sum of squares for all p variables is

SSReg(IB) = B’X'y

The associated number of degrees of freedom is p.
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The reduced model, valid under Hy, is

y= X008, +€

The least squares estimator of 3, is

5 -1

By = (X5Xy) Xy
in the reduced model.

The regression sum of squares for the variables associ-
ated with 3, is

SShee(Bs) = B, X5y
It has p — r degrees of freedom.

The regression sum of squares due to 3; given that 3,
already is in the model is

SSReg<61‘162> — SSReg(ﬂ) - SSReg(ﬁQ)
This sum of squares has r degrees of freedom.
Clearly,

SSReg(ﬁ) — SSReg(ﬂQ) + SSReg(/Bl|IBQ>

Hence SSpeg(B31|35) is the increase in the regression sum
of squares due to including the variables associated with
B3, in the model.
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Now

MSReg(ﬂl‘/BQ) —

is independent of MSg,,0; and unbiased for o under the
null hypothesis Hy : 3, = 0.

Thus, Hy may be tested by the statistic

_ MSReg(ﬁl |/62)
MSError

The rule is to reject Hy when Fy > Fl, ).

. SSReg(ﬂl‘ﬂQ)
r

FO NF(T,n—p)

Rejection means that H; : 3, # 0 is accepted, which is
to say that at least one of the variables associated to 3,
significantly contributes to the regression model.
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