Chapter 10. Summarizing data

1 Empirical probability distribution

Population cumulative distribution function $F(x) = P(X \le x)$. For an IID sample (X_1, \ldots, X_n) define

Empirical cdf
$$F_n(x)$$
 = proportion of $X_i \le x$

For a fixed x the sample proportion $F_n(x)$ is an unbiased and consistent estimate of the population proportion F(x).

After the sample is collected $F_n(x)$ is a cdf with mean \bar{X} and variance $\frac{n-1}{n}s^2$.

Lifelength T with cdf $F(t) = P(T \le t)$ and pdf f(t) = F'(t).

Survival function
$$S(t) = P(T > t) = 1 - F(t)$$

Empirical survival function $S_n(t) = 1 - F_n(t)$ is the proportion of the data greater than t.

Hazard function
$$h(t) = f(t)/S(t)$$

Mortality rate at age t: as δ tends to zero, $P(t < T \le t + \delta | T \ge t) = \frac{F(t+\delta) - F(t)}{S(t)} \sim \delta \cdot h(t)$. It is also the negative of the slope of the log survival function: $h(t) = -\frac{d}{dt} \log S(t) = -\frac{d}{dt} \log (1 - F(t))$.

Example. Guinea pigs. Guinea pigs infected with tubercle bacillus, p. 349-353: 5 treatment and one control group. Fig 10.2: survival function. Fig 10.3: log-survival function.

The flat hazard function $h(t) = \lambda$ corresponds to the $\text{Exp}(\lambda)$ model with $f(t) = \lambda e^{-\lambda t}$ and $S(t) = e^{-\lambda t}$. Weibull (γ, λ) distribution, scale parameter $\lambda > 0$ and shape parameter $\gamma > 0$:

$$f(t) = \lambda \gamma t^{\gamma - 1} e^{-\lambda t^{\gamma}}, \ t \ge 0, \ S(t) = e^{-\lambda t^{\gamma}}, \ h(t) = \lambda \gamma t^{\gamma - 1}$$

2 Density estimation

Histogram: plot observed counts O_j for cells of width h. Small h - ragged histogram, large h - obscured histogram, find a balanced h.

Scaled histogram: plot $f_h(x) = \frac{1}{nh}O_j$ for x in cell j to ensure $\int f_h(x)dx = 1$.

Kernel density estimate with bandwidth h produces a smooth curve

$$f_h(x) = \frac{1}{nh} \sum \phi(\frac{x - X_i}{h})$$
, where $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

Example. Male heights.

If hm is a column of 24 male heights, the for a given bandwidth h the following matstat code produces a plot for the kernel density estimate

$$x=160:0.1:210; L=length(x); f=normpdf((ones(24,1)*x - hm*ones(1,L))/h); fh=sum(f)/(24*h); plot(x,fh)$$

Steam-and-leaf plot for 24 male heights indicates the distribution shape plus gives the numerical information:

> 17:056678899 18:0000112346 19:229

3 Q-Q plots

p-quantile of a distribution
$$x_p = F_{-1}(p), \ 0 \le p \le 1$$

Quantile x_p cuts off proportion p of smallest values

$$P(X \le x_p) = F(x_p) = F(F_{-1}(p)) = p$$

Ordered sample $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$

Ordered sample
$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}$$

 $F_n(X_{(k)}) = \frac{k}{n}$ and $F_n(X_{(k)} - \epsilon) = \frac{k-1}{n}$

$$X_{(k)}$$
 is the empirical $(\frac{k-0.5}{n})$ -quantile

Two samples $(X_1, \ldots, X_n), (Y_1, \ldots, Y_m)$

test H_0 : two PDs are equal

by Q-Q plot = plot Y-quantiles against X-quantiles

Accept H_0 if the scatter plot is close to the bisector

equal quantiles = equal distributions

Linear model:
$$Y = a + b \cdot X$$
 in distribution

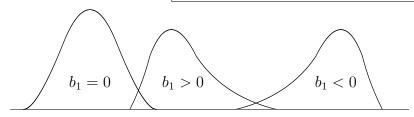
$$P(X \le x) = P(Y \le a + bx)$$

Linear model implies linear Q-Q plot $y_p = a + bx_p$

Normal probability plot. To test visually the normality hypothesis H_0 : PD = N(μ , σ^2) with unspecified parameters plot the normal quantiles $\Phi_{-1}(\frac{k-0.5}{n})$ against $X_{(k)}$. Accept H_0 with $\mu=a,\,\sigma=b$, if the scatterplot is close to the straight line x=a+by.

If normality does not hold, draw a straight line via empirical lower and upper quartiles to detect a light tails profile or heavy tails profile.

Coefficient of skewness:
$$b_1 = \frac{1}{s^3 n} \sum (X_i - \bar{X})^3$$



Kurtosis
$$b_2 = \frac{1}{s^4 n} \sum (X_i - \bar{X})^4$$
, normal data $b_2 = 3$

Leptokurtic distribution: $b_2 > 3$ (heavy tails). Platykurtic distribution: $b_2 < 3$ (light tails).

Example. Male heights. Summary statistics: $\bar{X} = 181.46$, $\hat{M} = 180$, $b_1 = 1.05$, $b_2 = 4.31$. Heights of adult males are positively skewed: P(height of a random male < the average) > 50%.

4 Measures of location

Central point of a distribution: either population mean μ , or mode, or median M defined as $M = x_{0.5}$, if distribution is continuous.

Population median
$$M: P(X < M) = P(X > M)$$

Sample median: $\hat{M} = X_{(k)}$, if n = 2k - 1 and $\hat{M} = \frac{X_{(k)} + X_{(k+1)}}{2}$, if n = 2k.

The sample median \hat{M} is a robust estimate, that is insensitive to outliers, while the sample mean \bar{X} is sensitive to outliers.

Nonparametric sign test

Given an iid sample test H_0 : $M = M_0$ against the two-sided alternative H_1 : $M \neq M_0$. No parametric model is assumed. The sign test statistic $Y = \sum_{i=1}^{n} I(X_i \leq M_0)$ counts the number of observations below the null hypothesis value. Under the null hypothesis

$$P(X_{(k)} < M_0 < X_{(n-k+1)}) = P(k \le Y \le n - k),$$

and $Y \in Bin(n, 0.5)$.

$$(X_{(k)}, X_{(n-k+1)}) = \text{nonparametric } 100 \cdot P(k \leq Y \leq n-k)\% \text{ CI for the population median.}$$

Reject H_0 if M_0 falls outside the corresponding confidence interval $(X_{(k)}, X_{(n-k+1)})$.

Example. For $Y \in Bin(n, 0.5)$ with n = 25 we have

Thus $(X_{(8)}, X_{(16)})$ is a 95.7% CI for the median.

Trimmed means

Measures of location for the central portion of the data

 α -trimmed mean \bar{X}_{α} = sample mean without $\frac{n\alpha}{2}$ smallest and $\frac{n\alpha}{2}$ largest observations

Example. Male heights. Ignoring 20% of largest and 20% of smallest observations we compute $\bar{X}_{0.4}$ =180.36.

When summarizing data compute several measures of location and compare the results

Nonparametric bootstrap

IID sampling from the empirical distribution = sampling with replacement from x_1, \ldots, x_n . Simulate many new samples of size n to get an idea of the sampling distribution of an estimate like trimmed mean, sample median, s.

5 Measures of dispersion

Sample variance s^2 and sample range $R = X_{(n)} - X_{(1)}$ are sensitive to outliers. Robust measures of dispersion:

```
interquartile range IQR = x_{0.75} - x_{0.25}
MAD = median of abs dev |X_i - \hat{M}|, i = 1, ..., n.
```

Three estimates of
$$\sigma$$
 in $N(\mu, \sigma^2)$: s , $\frac{IQR}{1.35}$, $\frac{MAD}{0.675}$

In the N(μ , σ^2) case IQR = ($\mu + \sigma \Phi_{-1}(0.75)$) – ($\mu + \sigma \Phi_{-1}(0.25)$) = 1.35 σ , because $\Phi_{-1}(0.75)$ = 0.675. Moreover, MAD = 0.675 σ , since P($|X - \mu| \le 0.675\sigma$) = 0.5.

Boxplot

```
box center = median upper edge of the box = upper quartile (UQ) lower edge of the box = lower quartile (LQ) upper whisker end = \{\max \text{ data point} \leq \text{UQ} + 1.5 \text{ IQR}\} lower whisker end = \{\min \text{ data point} \geq \text{LQ} - 1.5 \text{ IQR}\} dots = \{\text{data} \geq \text{UQ} + 1.5 \text{ IQR}\} and \{\text{data} \leq \text{LQ} - 1.5 \text{ IQR}\}
```

Convenient to compare different samples. See for example Fig 10.14, p.374: daily SO_2 concentration data.