Chapter 11. Comparing two samples

Data consist of two IID samples (X_1, \ldots, X_n) and (Y_1, \ldots, Y_m) from two populations with (μ_x, σ_x) and (μ_y, σ_y) .

The difference $(\bar{X} - \bar{Y})$ is an unbiased estimate of $(\mu_x - \mu_y)$. Questions: find an interval estimate of $(\mu_x - \mu_y)$, and test the null hypothesis of equality H_0 : $\mu_x = \mu_y$.

1 Two independent samples

If
$$(X_1, \ldots, X_n)$$
 is independent from (Y_1, \ldots, Y_m) , then $\operatorname{Var}(\bar{X} - \bar{Y}) = \frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}$.

Large sample test for the difference

If n and m are large use a normal approximation $\bar{X} - \bar{Y} \stackrel{a}{\sim} \mathrm{N}(\mu_x - \mu_y, s_{\bar{x}}^2 + s_{\bar{y}}^2)$.

Approximate CI for $(\mu_x - \mu_y)$ is given by $\bar{X} - \bar{Y} \pm z_{\alpha/2} \cdot \sqrt{s_{\bar{x}}^2 + s_{\bar{y}}^2}$.

Dichotomous data: $X \sim \text{Bin}(n, p_1), Y \sim \text{Bin}(m, p_2)$. Normal approximation:

$$\hat{p}_1 - \hat{p}_2 \stackrel{a}{\sim} N(p_1 - p_2, \frac{\hat{p}_1\hat{q}_1}{n-1} + \frac{\hat{p}_2\hat{q}_2}{m-1})$$
 implies an approximate CI for $(p_1 - p_2)$: $\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1\hat{q}_1}{n-1} + \frac{\hat{p}_2\hat{q}_2}{m-1}}$.

Example: swedish polls.

Two consecutive poll results \hat{p}_1 and \hat{p}_2 with $n \approx m \approx 5000$ interviews. A change in support to Social Democrats at $\hat{p}_1 \approx 0.4$ is significant if $|p_1 - p_2| > 1.96 \cdot \sqrt{2 \cdot \frac{0.4 \cdot 0.6}{5000}} \approx 1.9\%$.

Two-sample t-test

Assumption: two normal distributions $X \sim N(\mu_x, \sigma^2)$, $Y \sim N(\mu_y, \sigma^2)$ with equal variances. Pooled sample variance $s_p^2 = \frac{n-1}{n+m-2} \cdot s_x^2 + \frac{m-1}{n+m-2} \cdot s_y^2$ with $E(s_p^2) = \sigma^2$. Notice that $Var(\bar{X} - \bar{Y}) = \sigma^2 \cdot \frac{n+m}{nm}$.

Exact distribution
$$\frac{(\bar{X}-\bar{Y})-(\mu_x-\mu_y)}{s_p}\cdot\sqrt{\frac{nm}{n+m}}\sim t_{m+n-2}$$

Exact CI for $(\mu_x - \mu_y)$ is given by $\bar{X} - \bar{Y} \pm t_{m+n-2}(\frac{\alpha}{2}) \cdot s_p \cdot \sqrt{\frac{n+m}{nm}}$.

Two sample t-test, equal population variances

$$H_0$$
: $\mu_x = \mu_y$, null distribution $\frac{\bar{X} - \bar{Y}}{s_p} \cdot \sqrt{\frac{nm}{n+m}} \sim t_{m+n-2}$

If variances are different: $X \sim N(\mu_x, \sigma_x^2)$, $Y \sim N(\mu_y, \sigma_y^2)$, then $\frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{s_x^2 + s_y^2}}$ has an approximate t_{df} -distribution with df = $\frac{(s_x^2 + s_y^2)^2}{s_x^4/n + s_y^4/m} - 2$ degrees of freedom.

Example: iron retention.

Percentage of Fe²⁺ and Fe³⁺ retained by mice data for the concentration 1.2 millimolar: p. 396

Fe²⁺:
$$n = 18$$
, $\bar{X} = 9.63$, $s_x = 6.69$, $s_{\bar{x}} = 1.58$

Fe³⁺:
$$m = 18$$
, $\bar{Y} = 8.20$, $s_y = 5.45$, $s_{\bar{y}} = 1.28$

Boxplots and normal probability plots on p. 397 show that distributions are not normal.

Test H_0 : $\mu_x = \mu_y$ using observed $\frac{\bar{X} - \bar{Y}}{\sqrt{s_x^2 + s_y^2}} = 0.7$. Large sample test: approximate two-sided P-value = 0.48.

After the log transformation the data looks more like normally distributed, boxplots and normal probability plots on p. 398-399. The transformed data:

$$n = 18, X = 2.09, s_x = 0.659, s_{\bar{x}} = 0.155,$$

 $m = 18, \bar{Y} = 1.90, s_y = 0.574, s_{\bar{y}} = 0.135.$

Two sample t-test

equal variances: T = 0.917, df = 34, P = 0.3656, unequal variances: T = 0.917, df = 33, P = 0.3658.

Wilcoxon rank sum test

Nonparametric test assuming general population distributions F and G. Test H_0 : F = G against H_1 : $F \neq G$.

Non-parametric inference approach: pool the samples and replace the data by ranks

Test statistics

either $R_x = \text{sum of the ranks of } X$ observations or $R_y = \binom{n+m+1}{2} - R_x$ the sum of Y ranks. Null distributions of R_x and R_y depend only on sample sizes n and m: table 8, p. A21-23.

$$E(R_x) = \frac{n(m+n+1)}{2}, E(R_y) = \frac{m(m+n+1)}{2}, Var(R_x) = Var(R_y) = \frac{mn(m+n+1)}{12}.$$

For $n \ge 10$, $m \ge 10$ apply the normal approximations for the null distributions.

Example: student heights

In class experiment: X = females, n=3, Y = males, m=3. Compute R_x , and find one-sided P-value for the one-sided alternative.

2 Paired samples

Examples of paired observations:

different drugs for two patients matched by age, sex,

a fruit weighed before and after shipment,

two types of tires tested on the same car.

Paired sample: IID vectors $(X_1, Y_1), \ldots, (X_n, Y_n)$. Transform to a one-dimensional sample taking the differences $D_i = X_i - Y_i$. Estimate $\mu_x - \mu_y$ using the sample mean $\bar{D} = \bar{X} - \bar{Y}$.

Correlation coefficient $\rho = \frac{\text{Cov}(X,Y)}{\sigma_x \sigma_y}$. We have $\rho > 0$ for paired observations and $\rho = 0$ for independent observations.

Smaller standard error if $\rho > 0$: $Var(\bar{D}) = Var(\bar{X}) + Var(\bar{Y}) - 2\sigma_{\bar{x}}\sigma_{\bar{y}}\rho < Var(\bar{X}) + Var(\bar{Y})$.

Ex 4: platelet aggregation

Paired measurements of n = 11 individuals before smoking, Y_i , and after smoking, X_i . Using the data estimate correlation as $\rho \approx 0.90$.

Y_{i}	X_i	D_i	Signed rank
25	27	2	+2
25	29	4	+3.5
27	37	10	+6
44	56	12	+7
30	46	16	+10
67	82	15	+8.5
53	57	4	+3.5
53	80	27	+11
52	61	9	+5
60	59	-1	-1
28	43	15	+8.5

Assuming $D \sim N(\mu, \sigma^2)$ apply the one-sample t-test to H_0 : $\mu_x = \mu_y$ against H_1 : $\mu_x \neq \mu_y$. Observed test statistic $\frac{\bar{D}}{s_{\bar{D}}} = \frac{10.27}{2.40} = 4.28$. A two-sided P-value = 2*(1 - tcdf(4.28, 10)) = 0.0016.

The sign test

No assumption except IID sampling. Non-parametric test of H_0 : $M_D=0$ against H_1 : $M_D\neq 0$. Test statistics: either $Y_+ = \sum 1_{\{D_i > 0\}}$ or $Y_- = \sum 1_{\{D_i < 0\}}$. Both have null distribution Bin(n, 0.5).

Ties $D_i = 0$: discard tied observations reduce n or dissolve the ties by randomization

Ex 4: platelet aggregation

Observed test statistic $Y_{-} = 1$. A two-sided P-value $= 2[(0.5)^{11} + 11(0.5)^{11}] = 0.012$.

Wilcoxon signed rank test

Non-parametric test of H_0 : distribution of D is symmetric about $M_D = 0$.

Test statistics: either $W_+ = \sum \operatorname{rank}(|D_i|) \cdot I(D_i > 0)$ or $W_- = \sum \operatorname{rank}(|D_i|) \cdot I(D_i < 0)$.

Assuming no ties we get $W_+ + W_- = \frac{n(n+1)}{2}$. Null distributions of W_+ and W_- are equal. This distribution is given in Table 9, p. A24, whatever is the population distribution of D. Normal approximation of the null distribution with $\mu_W = \frac{n(n+1)}{4}$, and $\sigma_W^2 = \frac{n(n+1)(2n+1)}{24}$ for $n \geq 20$.

The signed rank test uses more data information than the sign test but requires symmetric distribution of differences.

Example: platelet aggregation

Observed value of the test statistic $W_{-} = 1$. It gives a two-sided P-value = 0.002 (check symmetry).

3 Influence of external factors

Double-blind, randomized controlled experiments are used to balance out external factors like placebo effect.

Other examples of external factors: time, background variables like temperature, locations of test animals or test plots in a field.

Example: portocaval shunt

Portocaval shunt is an operation used to lower blood pressure in the liver

Enthusiasm level	Marked	Moderate	None
No controls	24	7	1
Nonrandomized controls	10	3	2
Randomized controls	0	1	3

Example: platelet aggregation

Further parts of the experimental design: control group 1 smoked lettuce cigarettes, control group 2 "smoked" unlit cigarettes.

Simpson's paradox

Hospital A and has higher overall death rate than hospital B. However, if we split the data in two parts, patient in good and bad conditions, in both parts A is better.

Hospital:	A	В	A+	B+	A-	В–
Died	63	16	6	8	57	8
Survived	2037	784	594	592	1443	192
Total	2100	800	600	600	1500	200
Death Rate	.030	.020	.010	.013	.038	.040

The factor of interest, death rate, is confounded with the patient condition: + good, - bad.

