Chapter 13. The analysis of categorical data

1 Fisher's exact test

Population proportions for categorical data

	Population 1	Population 2
Category 1	π_{11}	π_{12}
Category 2	π_{21}	π_{22}
Total	1	1

Test hypothesis of homogeneity $H_{0}: \pi_{11}=\pi_{12}, \pi_{21}=\pi_{22}$ using two independent samples. Sample counts

	Population 1	Population 2	Total
Category 1	n_{11}	n_{12}	$n_{1 .}$
Category 2	n_{21}	n_{22}	$n_{2 .}$
Sample sizes	$n_{.1}$	$n_{.2}$	$n_{. .}$

Use n_{11} as a test statistic. Conditionally on n_{1}. the null distribution is hylergeometric $n_{11} \sim \operatorname{Hg}(N, n, p)$ with parameters $N=n_{. .}, n=n_{.1}, N p=n_{1 .}, N q=n_{2}$.

$$
\mathrm{P}\left(n_{11}=k\right)=\frac{\binom{N p}{k}\binom{N q}{n-k}}{\binom{N}{n}}, \quad \max (0, n-N q) \leq k \leq \min (n, N p) .
$$

Example: sex bias in promotion

Data: 48 copies of the same file with 24 labeled as "male" and other 24 labeled as "female".
Test $H_{0}: \pi_{11}=\pi_{12}$ no sex bias against $H_{1}: \pi_{11}>\pi_{12}$ males are favored. Observed data

	Male	Female	Total
Promote	$n_{11}=21$	$n_{12}=14$	$n_{1 .}=35$
Hold file	$n_{21}=3$	$n_{22}=10$	$n_{2 .}=13$
Total	$n_{.1}=24$	$n_{.2}=24$	$n_{. .}=48$

Reject H_{0} for large n_{11} using the null distribution $\mathrm{P}\left(n_{11}=k\right)=\frac{\binom{35}{k}\binom{13}{24-k}}{\binom{48}{24}}, 11 \leq k \leq 24$. Since $\mathrm{P}\left(n_{11} \leq 14\right)=\mathrm{P}\left(n_{11} \geq 21\right)=0.025$ we find a one-sided $P=0.025$, and a two-sided $P=0.05$. Significant evidence of sex bias, reject the null hypothesis.

$2 \quad \chi^{2}$-test of homogeneity

Population proportions: $I J$ parameters with $J(I-1)$ independent parameters

	Population 1	Population 2	\ldots	Population J
Category 1	π_{11}	π_{12}	\ldots	$\pi_{1 J}$
Category 2	π_{21}	π_{22}	\ldots	$\pi_{2 J}$
\ldots	\ldots	\ldots	\ldots	\ldots
Category I	$\pi_{I 1}$	$\pi_{I 2}$	\ldots	$\pi_{I J}$
Total	1	1	\ldots	1

Null hypothesis of homogeneity meaning that all J distributions are equal

$$
H_{0}:\left(\pi_{11}, \ldots, \pi_{I 1}\right)=\left(\pi_{12}, \ldots, \pi_{I 2}\right)=\ldots=\left(\pi_{1 J}, \ldots, \pi_{I J}\right)
$$

Test H_{0} against $H_{1}: \pi_{i j} \neq \pi_{i l}$ for some (i, j, l) using sample counts in J independent samples

	Pop. 1	Pop. 2	\ldots	Pop. J	Total
Category 1	n_{11}	n_{12}	\ldots	$n_{1 J}$	$n_{1 .}$
Category 2	n_{21}	n_{22}	\ldots	$n_{2 J}$	$n_{2 .}$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
Category I	$n_{I 1}$	$n_{I 2}$	\ldots	$n_{I J}$	$n_{I .}$
Sample sizes	$n_{.1}$	$n_{.2}$	\ldots	$n_{. J}$	$n_{. .}$

J independent multinomial distributions $\left(n_{1 j}, \ldots, n_{I j}\right) \sim \operatorname{Mn}\left(n_{. j} ; \pi_{1 j}, \ldots, \pi_{I j}\right), j=1, \ldots, J$.
Under the H_{0} the MLE of $\pi_{i j}$ are the pooled sample proportion $\hat{\pi}_{i j}=n_{i .} / n \ldots$. These yield the expected cell counts $\hat{E}_{i j}=n_{\cdot j} \cdot \hat{\pi}_{i j}=n_{i \cdot} \cdot n_{\cdot j} / n$... and the χ^{2}-test statistic formula

$$
X^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n_{i j}-n_{i} \cdot n_{\cdot j} / n . .\right)^{2}}{n_{i \cdot} \cdot n_{\cdot j} / n . .}
$$

Reject H_{0} for large values of X^{2} using the approximate null distribution $X^{2} \stackrel{a}{\sim} \chi_{\mathrm{df}}^{2}$ with $\mathrm{df}=(I-1)(J-1)$, wich is obtained as $\mathrm{df}=J(I-1)-(I-1)=(I-1)(J-1)$.

$$
\mathrm{df}=\text { no. independent counts }- \text { no. independent parameters estimated from the data }
$$

Example: small cars and personality

Attitude toward small cars for different personality types

	Cautious	Midroad	Explorer	Total
Favorable	$79(61.6)$	$58(62.2)$	$49(62.2)$	186
Neutral	$10(8.9)$	$8(9.0)$	$9(9.0)$	27
Unfavorable	$10(28.5)$	$34(28.8)$	$42(28.8)$	86
Total	99	100	100	299

The observed test statistic is $X^{2}=27.24$. With df $=4$ it is larger than $\chi_{4,0.005}^{2}=14.86$. Conclusion: reject H_{0} at 0.5% significance level. Cautious people are more favorable to small cars.

3 Chi-square test of independence

One population cross-classified with respect to two classifications A, B with numbers of classes I, J. $I J$ population proportions with $I J-1$ of them independent.

Classes	B_{1}	$\mathrm{~B}_{2}$	\ldots	$\mathrm{~B}_{J}$	Total
A_{1}	π_{11}	π_{12}	\ldots	$\pi_{1 J}$	$\pi_{1 .}$
A_{2}	π_{21}	π_{22}	\ldots	$\pi_{2 J}$	$\pi_{2 .}$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
A_{I}	$\pi_{I 1}$	$\pi_{I 2}$	\ldots	$\pi_{I J}$	$\pi_{I .}$
Total	$\pi_{.1}$	$\pi_{.2}$	\ldots	$\pi_{. J}$	1

Null hypothesis of independence $H_{0}: \pi_{i j}=\pi_{i \cdot} \cdot \pi_{\cdot j}$ for all pairs (i, j) to be tested against $H_{1}: \pi_{i j} \neq \pi_{i \cdot} \cdot \pi_{\cdot j}$ for at least one pair (i, j) (dependence). Data: a cross-classified sample

Classes	B_{1}	$\mathrm{~B}_{2}$	\ldots	$\mathrm{~B}_{J}$	Total
A_{1}	n_{11}	n_{12}	\ldots	$n_{1 J}$	$n_{1 .}$
A_{2}	n_{21}	n_{22}	\ldots	$n_{2 J}$	$n_{2 .}$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
A_{I}	$n_{I 1}$	$n_{I 2}$	\ldots	$n_{I J}$	$n_{I .}$
Total	$n_{.1}$	$n_{.2}$	\ldots	$n_{. J}$	$n_{. .}$

A multinomial distribution in the matrix form $\left\|n_{i j}\right\| \sim \operatorname{Mn}\left(n_{\text {. }} ;\left\|\pi_{i j}\right\|\right)$. Under H_{0} the MLE of $\pi_{i j}$ are $\hat{\pi}_{i j}=\frac{n_{i \cdot}}{n . .} \cdot \frac{n_{\cdot j}}{n . .}$ implying the same expected cell counts as before $\hat{E}_{i j}=n_{. .} \cdot \hat{\pi}_{i j}=n_{i} \cdot n_{\cdot j} / n .$. with the same $\mathrm{df}=(I J-1)-((I-1)+(J-1))=(I-1)(J-1)$.
Conclusion: the same χ^{2} test procedure for homogeneity test and for the independence test.

$$
\text { Homogeneity: } \mathrm{P}(A=i \mid B=j)=\mathrm{P}(A=i) \text { for all }(i, j) \text { is equivalent to }
$$ independence: $\mathrm{P}(A=i, B=j)=\mathrm{P}(A=i) \mathrm{P}(B=j)$ for all (i, j)

Eximple: marital status and educational level
A 2×2 contingency table

Education	Married once	Married $>$ once	Total
College	$550(523.8)$	$61(87.2)$	611
No College	$681(707.2)$	$144(117.8)$	825
Total	1231	205	1436

H_{0} : no relationship between the marital status and the education level. Observed $X^{2}=16.01$. With $\mathrm{df}=1$ we can use the normal distribution table, since $Y \sim \chi_{1}^{2}$ is equivalent to $\sqrt{Y} \sim \mathrm{~N}(0,1)$ so that

$$
\mathrm{P}\left(Y>z_{\alpha / 2}^{2}\right)=\mathrm{P}\left(\sqrt{Y}>z_{\alpha / 2}\right)+\mathrm{P}\left(-\sqrt{Y}<-z_{\alpha / 2}\right)=2 \mathrm{P}\left(\sqrt{Y}>z_{\alpha / 2}\right)=\alpha .
$$

As $\sqrt{16.01}=4.001$ is more than 3 standard deviations, we conclude that a P -value is less that 0.1% and we reject the null hypothesis of independence.

4 Matched-pairs designs

Example: Hodgkin's disease and tonsillectomy

Test H_{0} : "tonsillectomy has no influence on disease onset" using a 2×2 cross-classification:
$D=$ Diseased (affected), $\bar{D}=$ unaffected
$X=\mathrm{e}$ Xposed (tonsillectomy), $\bar{X}=$ non-exposed
Three sampling designs: simple random sampling, a prospective study (X-sample and \bar{X}-sample), a retrospective study (D-sample and \bar{D}-sample).
Since the disease is rare, incidence of Hodgkin's disease is 2 in 10000 , one usually gets something like

$$
\text { random sampling: } \begin{array}{c|cc|}
& X & \bar{X} \\
\hline \bar{D} & 0 & 0 \\
& \bar{D} & 0 \\
n
\end{array} \text {, prospective: } \begin{array}{c|cc}
& X & \bar{X} \\
\hline \bar{D} & 0 & 0 \\
\bar{D} & n_{1} & n_{2}
\end{array} \text {, retrospective: } \begin{gathered}
\\
\hline D
\end{gathered} n_{11} n_{12}
$$

Two datasets
VGD-1971

	X	\bar{X}
D	67	34
D	43	64

and JJ-1972

	X	\bar{X}
D	41	44
D	33	52

resulted in two χ^{2} tests $X_{\mathrm{VGD}}^{2}=14.29, X_{\mathrm{JJ}}^{2}=1.53$, $\mathrm{df}=1$, two strikingly different P-values:
$\mathrm{P}\left(X_{\mathrm{VGD}}^{2} \geq 14.29\right) \approx 2(1-\Phi(\sqrt{14.29}))=0.0002$,
$\mathrm{P}\left(X_{\mathrm{JJ}}^{2} \geq 1.53\right) \approx 2(1-\Phi(\sqrt{1.53}))=0.215$.
JJ-data is based on a matched-pairs design and violates the assumption of independent samples: $n=85$ sibling (D, \bar{D})-pairs, same sex, close age.
A proper summary of the data distinguishes among four classes of sibling pairs

	exposed \bar{D}-sib	unexposed \bar{D}-sib	
exposed D-sibling	$n_{11}=26$	$n_{12}=15$	41
unexposed D-sibling	$n_{21}=7$	$n_{22}=37$	44
total	33	52	85

Notice that this contingency table contains more information than the previous one.

McNemar's test

2×2 cross-classified population

$$
\begin{array}{c|c|c}
\pi_{11} & \pi_{12} & \pi_{1 .} \\
\hline \pi_{21} & \pi_{22} & \pi_{2 .}
\end{array} \quad H_{0}: \pi_{1 .}=\pi_{.1} \text { or equivalently } H_{0}: \pi_{12}=\pi_{21}
$$

MLE of the population frequencies:

$$
\hat{\pi}_{11}=\frac{n_{11}}{n}, \quad \hat{\pi}_{22}=\frac{n_{22}}{n}, \quad \hat{\pi}_{12}=\hat{\pi}_{21}=\frac{n_{12}+n_{21}}{2 n}
$$

results in the test statistic $X^{2}=\sum_{i} \sum_{j} \frac{\left(n_{i j}-n \hat{\pi}_{i j}\right)^{2}}{n \hat{\pi}_{i j}}=\frac{\left(n_{12}-n_{21}\right)^{2}}{n_{12}+n_{21}}$ whose approximate null distribution is χ_{1}^{2} with $\mathrm{df}=4-1-2$. Reject the H_{0} for large values of X^{2}.

Example: Hodgkin. The JJ-data gives $X_{\text {McNemar }}^{2}=2.91$ and a P-value $=0.09$ smaller than 0.215 .

5 Odds ratios

Odds and probability of a random event A : odds $(A):=\frac{\mathrm{P}(A)}{\mathrm{P}(A)}$ and $\mathrm{P}(A)=\frac{\operatorname{odds}(A)}{1+\operatorname{odds}(A)}$. Notice that odds $(A) \approx \mathrm{P}(A)$ for small $\mathrm{P}(A)$.
Conditional odds: odds $(A \mid B):=\mathrm{P}(A \mid B) / \mathrm{P}(\bar{A} \mid B)=\mathrm{P}(A B) / \mathrm{P}(\bar{A} B)$. Odds ratio for a pair of events

$$
\Delta_{A B}:=\frac{\operatorname{odds}(A \mid B)}{\operatorname{odds}(A \mid \bar{B})}=\frac{\mathrm{P}(A B) \mathrm{P}(\bar{A} \bar{B})}{\mathrm{P}(\bar{A} B) \mathrm{P}(A \bar{B})}, \quad \Delta_{A B}=\Delta_{B A}, \quad \Delta_{A \bar{B}}=\frac{1}{\Delta_{A B}}
$$

is a measure of dependence between the two random events
if $\Delta_{A B}=1$, then events A and B are independent,
if $\Delta_{A B}>1$, then $\mathrm{P}(A \mid B)>\mathrm{P}(A \mid \bar{B})$ so that B increases probability of A,
if $\Delta_{A B}<1$, then $\mathrm{P}(A \mid B)<\mathrm{P}(A \mid \bar{B})$ so that B decreases probability of A.
Example: Hodgkin. Conditional probabilities and observed counts in the VGD-1971 study

	X	\bar{X}	Total					
D	$\mathrm{P}(X \mid D)$	$\mathrm{P}(\bar{X} \mid D)$	1					
\bar{D}	$\mathrm{P}(X \mid \bar{D})$	$\mathrm{P}(\bar{X} \mid \bar{D})$	1	\quad		X	\bar{X}	Total
:---:	:---:	:---:	:---:					
D	n_{00}	n_{01}	$n_{0 .}$					
\bar{D}	n_{10}	n_{11}	$n_{1 .}$					

Odds ratio $\Delta_{D X}=\frac{\mathrm{P}(X \mid D) \mathrm{P}(\bar{X} \mid \bar{D})}{\mathrm{P}(X \mid D) \mathrm{P}(X \mid \bar{D})}$ measures the influence of tonsillectomy on Hodgkin's disease.
Estimated odds ratio $\hat{\Delta}=\frac{\left(n_{00} / n_{0}\right)\left(n_{11} / n_{1 .}\right)}{\left(n_{01} / n_{0}\right)\left(n_{10} / n_{1}\right)}=\frac{n_{00} n_{11}}{n_{01} n_{10}}=\frac{65.64}{43.34}=2.93$.
Conclusion: tonsillectomy increases the chances for Hodgkin's onset by factor 2.93.

