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Chapter 14. Linear least squares

1 Simple linear regression model

A linear model for the random response Y = Y (x) on an independent variable X = z. For a given
set of values (x1,...,z,) of the independent variable put
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assuming that the noise (ey,...,€,) has independent N(0,0?) random components. Given the data
(Y1, .-, Yn), the model is characterized by the likelihood function
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of three unknown model parameters 3y, 31, 2. Summary statistics:
sample covariance sxy nl > (i —Z)(yi — 1),

sample variances s2 = —= Y7 (2; — )%, 52 = =5 > (4 — §)?,
Sqy
sample correlation coefﬁment r=

SzSy

Least squares estimates

Regression lines: true y = fy + f1z and fitted y = by + byx. We want to find (b, b1) such that the
observed responses y; are approximated by the predicted responses ¢; = by + bix; in an optimal way.
Least squares method: find (bg, b;) minimizing the sum of squares S(bgy, b1) = >_(y; — 9:)*.

From 05/0by = 0 and 905/0b; = 0 we get the so-called Normal Equations:

{ nby + b1 30, @i = Y i D R
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Observe that the least square estimates (by, by) are the maximum likelihood estimates of (g, 51).

Least square regression line: for a given value x the predicted response is § = § + r¢(z — T).
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Least square estimates are not robust against outliers: outliers exert leverage on the fitted line, p. 522.

Sums of squares SST = SSE + SSR
SST =3 (i —9)> = (n—1)s;, df=n-1
SSR = S°(4; — 7)° = (n — 1) df = 1
SSE = > (i — 9:)> = (n—1)s2(1 —7?) df =n —2

Corrected MLE of 0% s? = 388 — n=14 (1 —1r?)

Coefficient of determination 72 = gng{ 1— gg% is the proportion of variation in Y explained by main

factor X. The coefficient of determination r? has a more transparent meaning than correlation r.
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2 Confidence intervals and hypothesis testing
Unbiased and consistent estimates: by ~ N(8y,03), o8 = %, by ~ N(By,0%), 0% = #

2z negative, if £ > 0, and positive,

g°-T

Weak dependence between the two estimates Cov(bg, b)) = — iz

if z < 0. Exact sampling distributions
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Exact 100(1 — a)% CI for i b; £ tajan—2 - Sp,

Hypothesis testing Hy: 5, = [1o: test statistic T = bl;ﬂ, exact null distribution 7" ~ ¢, _».
Model utility test '

Hy: $1 = 0 (no relationship between X and Y), test statistic 7" = by /s, , null distribution 7" ~ ¢,,_s.
Zero intercept hypothesis

Hy: By = 0, test statistic T' = by/sy,, null distribution T ~ ¢,,_.

Intervals for individual observations

Given z predict the value y for the random variable Y = §y+ 1 -x+€. Its expected value = B+ 51 -x
has the least square estimate i = by + by - x. The standard error of ji is computed as the square root
of Var(fi) = = + n"—_21 (5%

n

Exact 100(1 — )% confidence interval for the mean p: by + bz £ta/2,-2 - s\/l + ﬁ(ﬂc_j)2

n Sz
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Exact 100(1 — )% prediction interval for y: by + bix £ t4/2n—2 - s\/l + % + ﬁ(x_”_”)z

Prediction interval has wider limits since Var(Y — i) = Var(i) + 02 = o%(1 + = + 15 - (2=5)%).

To illustrate draw confidence bands around the regression line both for the individual observation y
and the mean pu.

Assessing the fit
Properties of the least square residuals e; = y; — 9;: €2 + ... + €2 is at minimum,
e1+...+e, =0, r1e1+...+x0e, =0, 1161 4+ ... + Yne, =0,
meaning that e; are uncorrelated with z; and e; are uncorrelated with g;.
Residual e; has normal distribution with zero mean and
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Cov(e;, ej) =

Standardized residuals := e;/s.,, where s., = s4/1 — % Use the normal distribution plot

for standardized residuals to test normality assumption. Expected plot of the standardized residuals
versus z;: horizontal blur (linearity), variance does not depend on = (homoscedasticity)

Example: flow rate vs stream depth.
Page 517-518: the scatter plot is slightly non-linear. The residual plot has the U-shape. Page 518-519:



the scatter log-log plot is closer to linear and the residual plot is horizontal.

Example: breast cancer

Page 520-521: absolute mortality y vs population size x produces a heteroscedastic residual plot. Page
523: normal probability plot is not linear.

Transformed variables |/y vs y/x: homoscedastic residual plot on page 521. Page 524: normal proba-
bility plot is closer to linear.

3 Multiple regression

Linear regression model Y = fy + 121 + ... + B,_17,_1 + € with a homoscedastic noise € ~ N(0,0?).
Data: observations (yi, ...,y,) are realizations of n independent random variables

Yi=08+ Birig+ ...+ Bpatipaa te, ., Y =00+ B + .o+ BpoiTnp1 + €.
In the matrix notation the vector y = (y1,...,yn)" is a realization of Y = X3 + €, where
Y=W,....Y)" B=0B0. - 01)", €=(e1,...,€n)",
and X is the so called design matrix
1m0 Tipa
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Least square estimates b = (b, ..., b,—1)" minimize S(b) = ||y — Xb|%.

Normal equations X”Xb = Xy if rank(X) = p, then b = (X7 X)'X"y.

Least squares multiple regression: predicted responses y = Xb = Py, where P = X(X*X)'X".

p—1
Covariance matrix for the least square estimates Xy, = (Cov(bl-, bj)) = o?(XTX) 1.
i.j=0

An unbiased estimate of o2 is given by s = |ly — y||*/(n — p).

Standard errors s, = s./s;;, where s;; are the diagonal elements of the matrix (XTX)*l.

Exact sampling distributions % ~tpp,t=1,...,p—1.
Residuals e = y —y = (I — P)y have a covariance matrix Y. = |[|Cov(e;,e;)]| = o*(I — P).
: : Yi— Ui
Standardized residuals - i
Coefficient of multiple determination R?* = 1 — £8¢, where SSE = ||y — y||%, SST = (n — 1)s2. The
problem with R? is that it increases even if irrelevant variables are added to the model.
Adjusted coefficient of multiple determination R? =1 — Z%; . gg—%

is more appropriate as it punishes for irrelevant variables.



Example: flow rate vs stream depth.
Quadratic model y = By + B1z + B2, Page 543: residuals shows no signs of systematic misfit. Linear
and quadratic terms are statistically significant (n = 10)

Coefficient ‘ Estimate ‘ Standard Error ‘ t Value

Bo 1.68 1.06 1.52
b1 —10.86 4.52 —2.40
Ba 23.54 4.27 5.51

Emperical relationship developed in a region might break down,
if extrapolated to a wider region in which no data been observed

Example: heart catheter.
Catheter length depending on child’s height and weight. Page 546: pairwise scatterplots, n = 12. Two
simple linear regressions

Estimate Height t Value Weight t Value
bo(Sp,) 12.1(4.3) 2.8 25.6(2.0) 12.8
b1 (sp,) 0.60(0.10) 6.0 0.28(0.04) 7.0

s 4.0 3.8

r?(R?) 0.78 (0.76) 0.80 (0.78)

Page 547: plots of standardized residuals. Multiple regression model L = 5y + 51 H + S2W brings

bo=21, s, =88, by/sp = 2.39,
by = 0.20, s, =0.36, by /sy, = 0.56,
by = 0.19, s, = 0.17, by/sp, = 1.12,
s=39, R2=081, R>=0.7T.

Can not reject neither Hy : $; = 0 nor Hy : f5 = 0. Different meaning of the slope parameters in the
simple and multiple regression models. Here 3 is the expected change in L when H increased by one
unit and W held constant.

Collinearity problem: height and weight have a strong linear relationship.

Fitted plane has a well resolved slope along the line about which the (H, W) points fall and poorly
resolved slopes along the H and W axes.

Page 549: standard residuals from the multiple regression. Conclusion: little or no gain from adding
W to the simple regression model model with an independent variable H.



