Introduction to Bayesian inference

1 Bayesian approach

Main idea of the Baysian approach: treat the population parameter θ is a random variable. Two distributions of θ

prior distribution density $g(\theta) = \text{knowledge on } \theta$ before data is collected, posterior distribution $h(\theta|x) = \text{knowledge on } \theta$ updated after the data x is collected.

Bayes formula
$$h(\theta|x) = \frac{f(x|\theta)g(\theta)}{\phi(x)}$$
 Posterior \propto likelihood \times prior

Marginal distribution of X has density $\phi(x) = \int f(x|\theta)g(\theta)d\theta$. This is the likelihood $f(x|\theta)$ of the data weighted over different values of θ using the prior distribution.

Example. IQ measurement.

A randomly chosen individual has IQ θ . Its prior distribution is $\theta \sim N(100,225)$ describing population as a whole: average IQ is m=100 and standard deviation v=15. The result of an IQ measurement has distribution $X \sim N(\theta, 100)$: no systematic error and random error $\sigma = 10$. We have

$$g(\theta) = \frac{1}{\sqrt{2\pi}v} e^{-\frac{(\theta - m)^2}{2v^2}}, \quad f(x|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \theta)^2}{2\sigma^2}},$$

and $h(\theta|x)$ is proportional to $g(\theta)f(x|\theta)$. Put $\gamma = \frac{\sigma^2}{\sigma^2 + v^2}$, shrinkage factor. Since

$$e^{-\frac{(\theta-m)^2}{2v^2}}e^{-\frac{(x-\theta)^2}{2\sigma^2}} = \exp\left\{-\frac{(\theta-m)^2}{2v^2} - \frac{(x-\theta)^2}{2\sigma^2}\right\} = \exp\left\{-\frac{(\theta-\gamma m - (1-\gamma)x)^2}{2\gamma v^2}\right\},$$

we conclude that the posterior distribution is normal

$$h(\theta|x) = \frac{1}{\sqrt{2\pi\gamma}v} e^{-\frac{(\theta-\gamma m - (1-\gamma)x)^2}{2\gamma v^2}}.$$

If observed IQ is x = 130, then the posterior distribution is $\theta \sim N(120.7, 69.2)$.

2 Conjugate priors

Two families of probability distributions G and H

G is a family of conjugate priors to H, if a G-prior and a H-likelihood give a G-posterior

Examples of conjugate priors

Data distribution	Prior	Posterior distribution	Comments
$(X_1,\ldots,X_n),X_i\sim N(\theta,\sigma^2)$	$\mu \sim N(m, v^2)$	$N(\gamma_n m + (1 - \gamma_n)\bar{x}; \gamma_n v^2)$	$\gamma_n = \frac{\sigma^2}{\sigma^2 + nv^2}$
$X \sim \text{Bin}(n,p)$	$p \sim \text{Beta}(a, b)$	Beta(a+x,b+n-x)	counts plus
$(X_1,\ldots,X_r) \sim \operatorname{Mn}(n;p_1,\ldots,p_r)$	$D(\alpha_1,\ldots,\alpha_r)$	$D(\alpha_1+x_1,\ldots,\alpha_r+x_r)$	pseudocounts
$X \sim \text{Pois}(\mu)$	$\mu \sim \Gamma(\alpha, \lambda)$	$\Gamma(\alpha+x,\lambda+1)$	posterior variance
$X \sim \text{Exp}(\rho)$	$\rho \sim \Gamma(\alpha, \lambda)$	$\Gamma(\alpha+1,\lambda+x)$	is always smaller

Beta distribution Beta(a,b) density $f(p) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{a-1} (1-p)^{b-1}, \ 0$

Mean and variance $\mu = \frac{a}{a+b}$, $\sigma^2 = \frac{\mu(1-\mu)}{a+b+1}$, pseudocounts a > 0, b > 0.

Dirichlet distribution $D(\alpha_1, \dots, \alpha_r)$ density $f(p_1, \dots, p_r) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_r)} p_1^{\alpha_1 - 1} \dots p_r^{\alpha_r - 1}$ with non-negative $p_1 + \dots + p_r = 1$ Positive pseudocounts of

with non-negative $p_1 + \ldots + p_r = 1$. Positive pseudocounts $\alpha_1, \ldots, \alpha_r, \alpha_0 = \alpha_1 + \ldots + \alpha_r$. Marginal distributions

$$p_j \sim \text{Beta}(\alpha_j, \alpha_0 - \alpha_j), j = 1, \dots, r, \text{ and negative covariances } \text{Cov}(p_1, p_2) = -\frac{\alpha_1 \alpha_2}{\alpha_0^2 (\alpha_0 + 1)}.$$

Example. Thumbtack experiment. Beta-binomial model: number of base landings $X \sim \text{Bin}(n, p)$ for n tossings of the thumbtack with p = P(landing on base).

My personal Beta prior $p \sim B(a_0, b_0)$ with $\mu_0 \approx 0.4$, $\sigma_0 \approx 0.1 \Rightarrow$ pseudocounts $a_0 = 10$, $b_0 = 15$.

Experiment 1: $n_1 = 10$ tosses, counts $x_1 = 2$, $n_1 - x_1 = 8$, posterior distribution Beta(12, 23) with mean $\hat{p} = \frac{12}{35} = 0.34$ and standard deviation $\sigma_1 = 0.08$.

Experiment 2: $n_2 = 40$ tosses, counts $x_2 = 9$, $n_2 - x_2 = 31$, posterior distribution Beta(21, 54) with mean $\hat{p} = \frac{21}{75} = 0.28$ and standard deviation $\sigma_2 = 0.05$.

3 Bayesian estimation

Action $a = \{assign \ value \ a \ to \ unknown \ parameter \ \theta\}$. Optimal action depends on the choice of the loss function $l(\theta, a)$. Bayes action minimizes posterior risk

$$R(a|x) = \int l(\theta, a)h(\theta|x)d\theta$$
 or $R(a|x) = \sum_{\theta} l(\theta, a)h(\theta|x)$.

MAP = maximum a posteriori probability estimate is based on

Zero-one loss function:
$$l(\theta, a) = 1_{\{\theta \neq a\}}$$

Posterior risk = probability of misclassification $R(a|x) = \sum_{\theta \neq a} h(\theta|x) = 1 - h(a|x)$ $\theta_{\text{map}} = \theta$ that maximizes $h(\theta|x)$.

For the non-informative prior $g(\theta) = \text{const}$, we get $h(\theta|x) \propto f(x|\theta)$ and $\hat{\theta}_{\text{map}} = \hat{\theta}_{\text{mle}}$.

PME = posterior mean estimate $\theta_{pme} = E(\theta|x)$ is based on

Squared error loss:
$$l(\theta, a) = (\theta - a)^2$$

$$R(a|x) = \mathrm{E}((\theta - a)^2|x) = \mathrm{Var}(\theta|x) + [\mathrm{E}(\theta|x) - a]^2.$$

Example. Loaded die experiment. A possibly loaded die is rolled 18 times:

211 453 324 142 343 515.

If the prior distribution is non-informative D(1,1,1,1,1,1), then MAP = MLE are given by the sample proportions $(\frac{4}{18}, \frac{3}{18}, \frac{4}{18}, \frac{4}{18}, \frac{3}{18}, 0)$. Not good: it excludes sixes in the future.

With the same prior D(1,1,1,1,1,1) the PME are
$$\hat{p}_1 = \frac{5}{24} = 0.21, \ \hat{p}_2 = \frac{4}{24} = 0.17, \ \hat{p}_3 = \frac{5}{24} = 0.21, \ \hat{p}_4 = \frac{5}{24} = 0.21, \ \hat{p}_5 = \frac{4}{24} = 0.17, \ \hat{p}_6 = \frac{1}{24} = 0.04.$$

4 Credibility interval

Confidence interval : θ is an unknown constant and a CI is random

$$P(\theta_0(X) < \theta < \theta_1(X)) = 1 - \alpha.$$

Credibility interval: θ is random and a CrI is nonrandom. It is computed from the posterior distribution $P(\theta_0(x) < \theta < \theta_1(x)) = 1 - \alpha$.

Example. IQ measurement.

Given n = 1, $\bar{X} \sim N(\mu; 100)$ a 95% CI for μ is $130 \pm 1.96 \cdot 10 = 130 \pm 19.6$.

Posterior distribution of μ is N(120.7; 69.2)

95% CrI for μ is $120.7 \pm 1.96 \cdot \sqrt{69.2} = 120.7 \pm 16.3$.

5 Hypotheses testing

Choose between H_0 : $\theta = \theta_0$ and H_1 : $\theta = \theta_1$

given prior probabilities $P(H_0) = \pi_0$, $P(H_1) = \pi_1$ and the likelihoods $f(x|\theta_0)$, $f(x|\theta_1)$.

Cost function: $l_{\rm I} = {\rm error}$ type I cost, $l_{\rm II} = {\rm error}$ type II cost.

Average cost for given a RR = rejection region

$$l_{\mathrm{I}}\pi_{0}\mathrm{P}(X \in \mathrm{RR}|\theta_{0}) + l_{\mathrm{II}}\pi_{1}\mathrm{P}(X \notin \mathrm{RR}|\theta_{1}) = l_{\mathrm{II}}\pi_{1} + \int_{x \in \mathrm{RR}} \left(l_{\mathrm{I}}\pi_{0}f(x|\theta_{0}) - l_{\mathrm{II}}\pi_{1}f(x|\theta_{1})\right)dx,$$

where the integral is taken over the RR. The rejection region minimizing the average cost is

$$RR = \{x: l_{\mathrm{I}}\pi_0 f(x|\theta_0) < l_{\mathrm{II}}\pi_1 f(x|\theta_1)\}$$

Reject H_0 if small likelihood ratio $\frac{f(x|\theta_0)}{f(x|\theta_1)} < \frac{l_{\text{II}}\pi_1}{l_1\pi_0}$ or small posterior odds $\frac{h(\theta_0|x)}{h(\theta_1|x)} < \frac{l_{\text{II}}}{l_1}$.

Example. Rape case study.

The defendant A, age 37, local, is charged with rape, H_0 : A is innocent, H_1 : A is guilty, error I: a non-guilty is convicted, against error II: a guilty is unpunished.

Prior probability $P(H_1) = \frac{1}{200,000}$.

Evidence:

 E_1 : DNA match, $P(E_1|H_0) = \frac{1}{200,000,000}$, $P(E_1|H_1)=1$,

 E_2 : A is not recognized by the victim,

 E_3 : alibi supported by the girlfriend.

Assumptions

$$P(E_2|H_1) = 0.1, P(E_2|H_0) = 0.9$$

$$P(E_3|H_1) = 0.25, P(E_3|H_0) = 0.5$$

$$P(H_1|E_1) = \frac{P(E_1|H_1)P(H_1)}{P(E_1|H_1)P(H_1) + P(E_1|H_0)P(H_0)} = \frac{1000}{1001}$$

$$P(H_1|E_1, E_2) = \frac{P(E_2|H_1)P(H_1|E_1)}{P(E_2|H_1)P(H_1|E_1) + P(E_2|H_0)P(H_0|E_1)} = \frac{1000}{1009}$$

Posterior probabilities
$$P(H_1|E_1) = \frac{P(E_1|H_1)P(H_1)}{P(E_1|H_1)P(H_1) + P(E_1|H_0)P(H_0)} = \frac{1000}{1001}$$

$$P(H_1|E_1, E_2) = \frac{P(E_2|H_1)P(H_1|E_1)}{P(E_2|H_1)P(H_1|E_1) + P(E_2|H_0)P(H_0|E_1)} = \frac{1000}{1009}$$

$$P(H_1|E_1, E_2, E_3) = \frac{P(E_3|H_1)P(H_1|E_1, E_2)}{P(E_3|H_1)P(H_1|E_1, E_2) + P(E_3|H_0)P(H_0|E_1, E_2)} = \frac{1000}{1018}.$$

Posterior odds $\frac{P(H_0|E_1,E_2,E_3)}{P(H_1|E_1,E_2,E_3)} = \frac{18}{1000} = 0.018$, reject H_0 if $\frac{l_{\text{II}}}{l_{\text{I}}} > 0.018$.

Is it better for fifty guilty people to go unpunished than for one innocent man to be convicted?