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Introduction to Bayesian inference

1 Bayesian approach

Main idea of the Baysian approach: treat the population parameter 6 is a random variable. Two
distributions of #

prior distribution density ¢g(f) = knowledge on 6 before data is collected,

posterior distribution h(f|z) = knowledge on 6 updated after the data x is collected.

Bayes formula h(f|x) = %

’Posterior o likelihood x prior‘

Marginal distribution of X has density ¢(z) = [ f(2]0)g(0)df. This is the likelihood f(z|6) of the
data weighed over different values of € using the prior distribution.

Example. IQ measurement.

A randomly chosen individual has IQ 6. Its prior distribution is  ~ N(100,225) describing population
as a whole: average IQ is m = 100 and standard deviation v = 15. The result of an IQ measurement
has distribution X ~ N(6, 100): no systematic error and random error ¢ = 10. We have
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and h(6|r) is proportional to g(0)f(x|0). Put v = —7—, shrinkage factor. Since
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we conclude that the posterior distribution is normal
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If observed 1Q is « = 130, then the posterior distribution is 6 ~ N(120.7, 69.2).

2 Conjugate priors

Two families of probability distributions G and H

’G is a family of conjugate priors to H, if a G-prior and a H-likelihood give a G-posterior

Examples of conjugate priors

Data distribution Prior Posterior distribution Comments
(X1,...,X0), X; ~ N(0,02) i~ N(m,v?) | N(yum 4 (1 — 4,)%; 7a0?) Vo = =L

X ~ Bin(n,p) p ~ Beta(a,b) | Beta(a + x,b+n — ) counts plus ...
(X1,..., X)) ~Mn(n;p1,...,p.) | D(ag,...,q,) | D(ag +21,...,00 + ) ... pseudocounts
X ~ Pois(p) p~T(a,\) MNa+z,A+1) posterior variance ...
X ~ Exp(p) p~T(a,\) Ma+1,A+x) ... is always smaller




Beta distribution Beta(a, b) density f(p) = —tlpo=1(] — py=1 0 < p < 1.

L(a)I'(b)
-, o2 = %, pseudocounts a > 0, b > 0.

Dirichlet distribution D(ay, ..., ;) density f(pi,... ,pr):%p‘fl Lo per—t

Mean and variance p =

with non-negative p; 4+ ...+ p, = 1. Positive pseudocounts oy, ..., a,, ag = a1 + ... + .
Marginal distributions
p; ~ Beta(aj, a0 — o), j =1,...,7, and negative covariances Cov(py, p2) = _aQ?égil)‘
0

Example. Thumbtack experiment. Beta-binomial model: number of base landings X ~ Bin(n, p)
for n tossings of the thumbtack with p = P(landing on base).

My personal Beta prior p ~ B(ag, by) with ug ~ 0.4, 09 ~ 0.1 = pseudocounts ag = 10, by = 15.
Experiment 1: ny = 10 tosses, counts x; = 2, n; — x; = 8, posterior distribution Beta(12, 23) with

mean p = 3= = 0.34 and standard deviation o; = 0.08.
Experlment 2: ny = 40 tosses, counts xo = 9, ny — x5 = 31, posterior distribution Beta(21, 54) with
mean p = = = (.28 and standard deviation oy = 0.05.

3 Bayesian estimation

Action a = {assign value a to unknown parameter 6}. Optimal action depends on the choice of the
loss function (6, a). Bayes action minimizes posterior risk

R(a|m):/l(0,a)h(9|x)d0 or  R(alz) = Zl@a (0]2).

MAP = maximum a posteriori probability estimate is based on

Zero-one loss function: I(0, a) = lggza)

Posterior risk = probability of misclassification R(a|z) = >,, h(0|z) =1 — h(a|z)
Omap = 0 that maximizes h(6]z).
For the non-informative prior g(#) = const, we get h(f|x)  f(x]0) and Onap = Omie-

PME = posterior mean estimate fyme = E(6]z) is based on

Squared error loss: 1(0,a) = (6 — a)?

R(a|z) = E((0 — a)?|z) = Var(0|z) + [E(f|z) — a]>.

Example. Loaded die experiment. A possibly loaded die is rolled 18 times:
211 453 324 142 343 515.

If the prior distribution is non informative D(1,1,1,1,1,1), then MAP = MLE are given by the sample
proportions (14—8, 13—8, %, o r ﬁ, 0). Not good: it excludes sixes in the future.

With the same prior D(l,l,l,l,l,l) the PME are
Pr=2 =021, Py = & =017, ps = & = 021, py = & = 0.21, s = & = 0.17, s = & = 0.04.



4 Credibility interval

Confidence interval : 0 is an unknown constant and a CI is random

P(0(X) <0 <6(X))=1-q.
Credibility interval: € is random and a Crl is nonrandom. It is computed from the posterior
distribution P(fp(z) < 0 < 01(z)) =1 — «a.

Example. IQ measurement.
Given n =1, X ~ N(u;100) a 95% CI for p is 130 & 1.96 - 10 = 130 £ 19.6.
Posterior distribution of p is N(120.7;69.2)

95% Crl for p is 120.7 £ 1.96 - +/69.2 = 120.7 + 16.3.

5 Hypotheses testing
Choose between Hy: 6 = 0y and Hq: 0 = 0,
given prior probabilities P(Hy) = mg, P(H;) = m; and the likelihoods f(x|6y), f(z]01).
Cost function: I} = error type I cost, l;; = error type II cost.
Average cost for given a RR = rejection region

lIﬂ'OP<X < RR|(90) + lHﬂ'lP(X ¢ RR|91) = lH7T1 +/ (l}ﬂ'of(l’Wo) - lnmf(x]@l))dx
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where the integral is taken over the RR. The rejection region minimizing the average cost is

RR = {z: imo f(2[00) < lumi f(w|0h)}

Reject Hj if small likelihood ratio [zlbo) l“’” or small posterior odds WO < T

f(=l61)
Example. Rape case study.
The defendant A, age 37, local, is charged with rape, Hy: A is innocent, Hy: A is guilty,
error I: a non-guilty is convicted, against error II: a guilty is unpunished.
Prior probability P(H;) =
Evidence:

_1
200,000 °

Eli DNA match, P<E1|H0) = Wlo,ooo’ P(E1’H1)217
E5: A is not recognized by the victim,
Ej5: alibi supported by the girlfriend.
Assumptions
Posterior probabilities
_ P(E)|H1)P(H:) __ 1000
P(H,|En) = P(El|H1)P<I§1)+1(1;(1|~:é|11;g)(§<1$))— 1001
__1000
P(Hl |E1, EZ) P(E2|H1)P (H12|]%(1);PI({EI§|PB(1[2P](EHOJ|EE)1) ~ 1009
: __ 1000
P(H\ By, By, B3)= 55,0015, 5+ P (sl Ho P 7). — 1018

Posterior odds % = 1000 = 0.018, reject Hy if l“ > 0.018.

Is it better for fifty guilty people to go unpunished than for one innocent man to be convicted?




