Chapter 8. Estimation of parameters and fitting of probability distributions

Given a parametric model with unknown parameter(s) θ
estimate θ from a random sample $\left(X_{1}, \ldots, X_{n}\right)$
Two basic methods of finding good estimates

1. method of moments, simple, first approximation for
2. max likelihood method, good for large samples

1 Parametric models

Binomial $\operatorname{Bin}(n, p)$: number of successes in n Bernoulli trials, $f(k)=\binom{n}{k} p^{k} q^{n-k}, 0 \leq k \leq n$.
Mean and variance $\mu=n p, \sigma^{2}=n p q$.
Hypergeometric $\operatorname{Hg}(N, n, p)$: sampling without replacement, $f(k)=\frac{\binom{N p}{k}\binom{N q}{n-k}}{\binom{N}{n}}, 0 \leq k \leq \min (n, N p)$.
Mean and variance $\mu=n p, \sigma^{2}=n p q\left(1-\frac{n-1}{N-1}\right)$. Finite population correction FPC=1- $\frac{n-1}{N-1}$.
Geometric $\operatorname{Geom}(p)$: number of trials until the first success, $f(k)=p q^{k-1}, k \geq 1, \mu=\frac{1}{p}, \sigma^{2}=\frac{q}{p^{2}}$.
Poisson $\operatorname{Pois}(\lambda)$: number of rare events $\approx \operatorname{Bin}(n, \lambda / n), f(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, k \geq 0, \mu=\sigma^{2}=\lambda$.
Exponential $\operatorname{Exp}(\lambda)$: Poisson process waiting times $f(x)=\lambda e^{-\lambda x}, x>0, \mu=\sigma=\frac{1}{\lambda}$.
Normal $\mathrm{N}\left(\mu, \sigma^{2}\right)$, CLT: many small independent contributions $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}},-\infty<x<\infty$.
$\operatorname{Gamma}(\alpha, \lambda)$: shape α and scale parameter $\lambda, f(x)=\frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}, x \geq 0, \mu=\frac{\alpha}{\lambda}, \sigma^{2}=\frac{\alpha}{\lambda^{2}}$.

2 Method of moments

Suppose we are given IID sample $\left(X_{1}, \ldots, X_{n}\right)$ from $\operatorname{PD}\left(\theta_{1}, \theta_{2}\right)$ with population moments

$$
\mathrm{E}(X)=f\left(\theta_{1}, \theta_{2}\right) \text { and } \mathrm{E}\left(X^{2}\right)=g\left(\theta_{1}, \theta_{2}\right)
$$

Method of moments estimates $\operatorname{MME}\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)$: solve equations $\bar{X}=f\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)$ and $\overline{X^{2}}=g\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)$.
Example. Bird hops. Data $X_{i}=$ nunber of hops that a bird does between flights, $n=130$:

No. hops	1	2	3	4	5	6	7	8	9	10	11	12	Tot
Frequency	48	31	20	9	6	5	4	2	1	1	2	1	130

Summary statistics

$$
\begin{aligned}
& \bar{X}=\frac{\text { total number of hops }}{\text { number of birds }}=\frac{363}{130}=2.79, \\
& X^{2}=1^{2} \cdot \frac{48}{130}+2^{2} \cdot \frac{31}{130}+\ldots+11^{2} \cdot \frac{2}{130}+12^{2} \cdot \frac{1}{130}=13.20, \\
& s^{2}=\frac{130}{129}\left(\bar{X}^{2}-\bar{X}^{2}\right)=5.47, \\
& s_{\bar{X}}=\sqrt{\frac{5.47}{130}}=0.205 .
\end{aligned}
$$

An approximate $95 \% \mathrm{CI}$ for $\mu: \bar{X} \pm z_{0.025} \cdot s_{\bar{X}}=2.79 \pm 1.96 \cdot 0.205=2.79 \pm 0.40$.

Geometric model $X \sim \operatorname{Geom}(p)$: from $\mu=1 / p$ we find a MME $\tilde{p}=1 / \bar{X}=0.358$.
Approximate 95\% CI for $p:\left(\frac{1}{2.79+0.40}, \frac{1}{2.79-0.40}\right)=(0.31,0.42)$.
Model fit: compare the observed frequencies to expected:

j	1	2	3	4	5	6	$7+$
O_{j}	48	31	20	9	6	5	11
E_{j}	46.5	29.9	19.2	12.3	7.9	5.1	9.1

$E_{j}=130 \cdot(0.642)^{j-1}(0.358)$ and $E_{7}=130-E_{1}-\ldots-E_{6}$. The chi-square test statistic is small $X^{2}=1.86$ saying that the model is good.

3 Maximum Likelihood method

Before sampling the random vector X_{1}, \ldots, X_{n} has a joint distribution $f\left(x_{1}, \ldots x_{n} \mid \theta\right)$.
After sampling the observed vector $\left(x_{1}, \ldots, x_{n}\right)$ has a likelihood $L(\theta)=f\left(x_{1}, \ldots x_{n} \mid \theta\right)$, which is a function of θ.
To illustrate draw three density curves for three parameter values $\theta_{1}<\theta_{2}<\theta_{3}$: the likelihood curve connects the x-values from the three curves.

The maximum likelihood estimate MLE $\hat{\theta}$ of θ is the value of θ that maximizes $L(\theta)$.
For the $\operatorname{Bin}(n, p)$ model the sample proportion is MME and MLE of p.

Large sample properties of MLE

If sample is iid, then the likelihood function is given by $L(\theta)=f\left(x_{1} \mid \theta\right) \cdots f\left(x_{n} \mid \theta\right)$ due to independence.
This implies for large n

$$
\text { Normal approximation } \hat{\theta} \in \mathrm{N}\left(\theta, \frac{1}{n I(\theta)}\right)
$$

Fisher information in a single observation: $I(\theta)=\mathrm{E}\left[\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right]^{2}=-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid \theta)\right]$
MLE $\hat{\theta}$ is asymptotically unbiased, consistent, and asymptotically efficient (has minimal variance).
Cramer-Rao inequality: if θ^{*} is an unbiased estimate of θ, the $\operatorname{Var}\left(\theta^{*}\right) \geq \frac{1}{n I(\theta)}$.
Approximate $100(1-\alpha) \%$ CI for $\theta: \hat{\theta} \pm \frac{z_{\alpha / 2}}{\sqrt{n I(\hat{\theta})}}$
Example. Battery lifetime. Lifetimes of five batteries measured in hours

$$
x_{1}=0.5, x_{2}=14.6, x_{3}=5.0, x_{4}=7.2, x_{5}=1.2
$$

Consider an exponential model $X \sim \operatorname{Exp}(\lambda)$, where λ is the death rate per hour. MME calculation:

$$
\mu=1 / \lambda, \tilde{\lambda}=1 / \bar{X}=\frac{5}{28.5}=0.175 .
$$

The likelihood function

$$
L(\lambda)=\lambda e^{-\lambda x_{1}} \lambda e^{-\lambda x_{2}} \lambda e^{-\lambda x_{3}} \lambda e^{-\lambda x_{4}} \lambda e^{-\lambda x_{5}}=\lambda^{n} e^{-\lambda\left(x_{1}+\ldots+x_{n}\right)}=\lambda^{5} e^{-\lambda \cdot 28.5}
$$

grows from 0 to $2.2 \cdot 10^{-7}$ and then falls down. The likelihood maximum is reached at $\hat{\lambda}=0.175$.
For the exponential model the MLE $\hat{\lambda}=1 / \bar{X}$ is biased but asymptotically unbiased: $\mathrm{E}(\hat{\lambda}) \approx \lambda$ for large samples, since $\bar{X} \approx \mu$ due to the Law of Large Numbers.
Fisher information can be computed $\frac{\partial^{2}}{\partial \lambda^{2}} \log f(X \mid \lambda)=-1 / \lambda^{2}, I(\lambda)=\frac{1}{\lambda^{2}}$. Thus, $\operatorname{Var}(\hat{\lambda}) \approx \frac{\lambda^{2}}{n}$ and we get an approximate 95% CI for $\lambda: 0.175 \pm 1.96 \frac{0.175}{\sqrt{5}}=0.175 \pm 0.153$.

4 Gamma model example

Male height sample of size $n=24$
$170,175,176,176,177,178,178,179,179,180,180,180,180,180,181,181,182,183,184,186,187,192,192,199$.
Summary statistics: $\bar{X}=181.46, \overline{X^{2}}=32964.2, \overline{X^{2}}-\bar{X}^{2}=37.08$.
Gamma model $X \sim \operatorname{Gamma}(\alpha, \lambda)$ is more flexible than the normal model. First we may us the method of moments:

$$
\mathrm{E}(X)=\frac{\alpha}{\lambda}, \mathrm{E}\left(X^{2}\right)=\frac{\alpha(\alpha+1)}{\lambda^{2}} \text { imply } \tilde{\alpha}=\bar{X}^{2} /\left(\overline{X^{2}}-\bar{X}^{2}\right)=887.96, \tilde{\lambda}=\tilde{\alpha} / \bar{X}=4.89
$$

Maximum likelihood function

$$
L(\alpha, \lambda)=\prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x_{i}^{\alpha-1} e^{-\lambda x_{i}}=\left(\frac{\lambda^{\alpha}}{\Gamma(\alpha)}\right)^{n}\left(x_{1} \cdots x_{n}\right)^{\alpha-1} e^{-\lambda\left(x_{1}+\ldots+x_{n}\right)} .
$$

Maximization of the log-likelihood function: set two derivatives equal to zero

$$
\begin{aligned}
& \frac{\partial}{\partial \alpha} \log L(\alpha, \lambda)=n \log (\lambda)+\sum \log x_{i}-n \frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}, \\
& \frac{\partial}{\partial \lambda} \log L(\alpha, \lambda)=\frac{n \alpha}{\lambda}-\sum x_{i} .
\end{aligned}
$$

Solve numerically two equations

$$
\log (\hat{\alpha} / \bar{X})=-\frac{1}{n} \sum \log X_{i}+\Gamma^{\prime}(\hat{\alpha}) / \Gamma(\hat{\alpha}),
$$

$$
\hat{\lambda}=\hat{\alpha} / \bar{X}, \text { using MME } \tilde{\alpha}=887.96, \tilde{\lambda}=4.89 \text { as the initial values. }
$$

Mathematica command

$$
\text { FindRoot }\left[\log [\mathrm{a}]==0.00055+\mathrm{Gamma}^{\prime}[a] / \text { Gamma[a], }\{\mathrm{a}, 887.96\}\right]
$$

gives MLE $\hat{\alpha}=908.76, \hat{\lambda}=5.01$ which are not far from the MME.

5 Parametric bootstrap

Simulate
1000 samples of size 24 from $\operatorname{Gamma}(908.76 ; 5.01)$
find 1000 estimates $\hat{\alpha}_{j}$ and plot a histogram
Use the simulated sampling distribution of $\hat{\alpha}$ and $\hat{\lambda}$
to find $\bar{\alpha}=1039.0$ and $s_{\hat{\alpha}}=\sqrt{\frac{1}{999} \sum\left(\hat{\alpha}_{j}-\bar{\alpha}\right)^{2}}=331.29$
large standard error because of small $n=24$
Bootstrap algorithm to find approximate $95 \% \mathrm{CI}:\left(2 \hat{\alpha}-c_{2}, 2 \hat{\alpha}-c_{1}\right)$
$\hat{\alpha} \rightarrow \hat{\alpha}_{1}, \ldots, \hat{\alpha}_{B} \rightarrow$ sampling distribution of $\hat{\hat{\alpha}} \rightarrow 95 \%$ brackets c_{1}, c_{2}.
Explanation of the CI formula:

$$
\begin{aligned}
0.95 & \approx \mathrm{P}\left(c_{1}<\hat{\hat{\alpha}}<c_{2}\right)=\mathrm{P}\left(c_{1}-\hat{\alpha}<\hat{\hat{\alpha}}-\hat{\alpha}<c_{2}-\hat{\alpha}\right) \approx \mathrm{P}\left(c_{1}-\hat{\alpha}<\hat{\alpha}-\alpha<c_{2}-\hat{\alpha}\right) \\
& =\mathrm{P}\left(2 \hat{\alpha}-c_{2}<\alpha<2 \hat{\alpha}-c_{1}\right) .
\end{aligned}
$$

Matlab commands for the male heights example:
gamrnd(908.76*ones(1000,24), 5.01*ones(1000,24)),
$\operatorname{prctile}(x, 2.5), \operatorname{prctile}(x, 97.5)$.

6 Exact confidence intervals

Assumption on the PD
an IID sample $\left(X_{1}, \ldots, X_{n}\right)$ is taken from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ with unspecified parameters μ and σ.

$$
\text { Exact distributions } \frac{\bar{X}-\mu}{s_{\bar{X}}} \sim t_{n-1} \text { and } \frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

t_{n-1}-distribution curve looks similar to $\mathrm{N}(0,1)$-curve: symmetric around zero, larger variance $=\frac{n-1}{n-3}$.
If Z, Z_{1}, \ldots, Z_{k} are $\mathrm{N}(0,1)$ and independent, then $\frac{Z}{\sqrt{\left(Z_{1}^{2}+\ldots+Z_{k}^{2}\right) / n}} \sim t_{k}$.
If Z_{1}, \ldots, Z_{k} are $\mathrm{N}(0,1)$ and independent, then $Z_{1}^{2}+\ldots+Z_{k}^{2} \sim \chi_{k}^{2}$.
Different shapes of χ_{k}^{2}-distribution: $\mu=k, \sigma^{2}=2 k$. It is a $\operatorname{Gamma}(k / 2,1 / 2)$-distribution.

$$
\text { Exact } 100(1-\alpha) \% \text { CI for } \mu: \bar{X} \pm t_{n-1}(\alpha / 2) \cdot s_{\bar{X}}
$$

Exact CI for μ is wider than the approximate CI
$\bar{X} \pm 1.96 \cdot s_{\bar{X}} \quad$ approximate CI for large n
$\bar{X} \pm 2.26 \cdot s_{\bar{X}} \quad$ exact CI for $n=10$
$\bar{X} \pm 2.13 \cdot s_{\bar{X}} \quad$ exact CI for $n=16$
$\bar{X} \pm 2.06 \cdot s_{\bar{X}} \quad$ exact CI for $n=25$
$\bar{X} \pm 2.00 \cdot s_{\bar{X}} \quad$ exact CI for $n=60$
Exact $100(1-\alpha) \%$ CI for $\sigma^{2}:\left(\frac{(n-1) s^{2}}{\chi_{n-1}^{2}(\alpha / 2)} ; \frac{(n-1) s^{2}}{\chi_{n-1}^{2}(1-\alpha / 2)}\right)$
A non-symmetric exact confidence interval for σ^{2}. Examples:
$\left(0.47 s^{2}, 3.33 s^{2}\right)$ for $n=10$
$\left(0.55 s^{2}, 2.40 s^{2}\right)$ for $n=16$
$\left(0.61 s^{2}, 1.94 s^{2}\right)$ for $n=25$
$\left(0.72 s^{2}, 1.49 s^{2}\right)$ for $n=60$
$\left(0.94 s^{2}, 1.07 s^{2}\right)$ for $n=2000$
$\left(0.98 s^{2}, 1.02 s^{2}\right)$ for $n=20000$

7 Sufficiency

Definition: $T=T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ, if given $T=t$ conditional distribution of $\left(X_{1}, \ldots, X_{n}\right)$ does not depend on θ.

A sufficient statistic T contains all the information in the sample about θ

Factorization criterium:
if $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=g(t, \theta) h\left(x_{1}, \ldots, x_{n}\right)$, then $\mathrm{P}(\mathbf{X}=\mathbf{x} \mid T=t)=\frac{h(\mathbf{x})}{\sum_{\mathbf{x}: T(\mathbf{x})=t} h(\mathbf{x})}$ independent of θ.

$$
\text { If } T \text { is sufficient for } \theta \text {, the MLE is a function of } T
$$

Bernoulli distribution

$$
\mathrm{P}\left(X_{i}=x\right)=\theta^{x}(1-\theta)^{1-x}
$$

$f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}=\theta^{n \bar{x}}(1-\theta)^{n-n \bar{x}}$.
Sufficient statistic is the number of successes $T=n \bar{X}$. Factorization: $g(t, \theta)=\theta^{n \bar{x}}(1-\theta)^{n-n \bar{x}}$. Normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ has a two-dimensional sufficient statistic $\left(t_{1}, t_{2}\right)=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$

$$
\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sigma^{n}(2 \pi)^{n / 2}} e^{-\frac{t_{2}-2 \mu t_{1}+n \mu^{2}}{2 \sigma^{2}}}
$$

Rao-Blackwell theorem.
Consider two estimates of $\theta: \hat{\theta}$ and $\tilde{\theta}=\mathrm{E}(\hat{\theta} \mid T)$. If $\mathrm{E}\left(\hat{\theta}^{2}\right)<\infty$, then $\operatorname{MSE}(\tilde{\theta}) \leq \operatorname{MSE}(\hat{\theta})$.

