Chapter 9. Testing hypotheses and assessing goodness of fit

1 Hypotheses testing

Find a rule based on data for choosing between two mutually exclusive hypotheses

null hypothesis H_0 : the effect of interest is zero,

alternative H_1 : the effect of interest is not zero.

 H_0 represents an established theory that must be discredited in order to demonstrate some effect H_1 .

Two types of error

type I error = false positive: reject H_0 when it's true, type II error = false negative: accept H_0 when it's false.

Test result	Negative: do not reject H_0	Positive: reject H_0
If H_0 is true	True negative. Specificity = $1 - \alpha$	False positive. Significance level α
If H_1 is true	False negative $\beta = P(\text{accept } H_0 H_1)$	True positive. Sensitivity = $1 - \beta$

Significance test

Test statistic = a function of the data with distinct typical values under H_0 and H_1 . Rejection region (RR) of a test = a set of values for the test statistic when H_0 is rejected.

If test statistic and sample size are fixed, then either α or β gets larger when RR is changed.

Significance test approach to choose a rejection region:

fix an appropriate significance level α ,

find a RR from $\alpha = P(\text{test statistic} \in RR|H_0)$ using the null distribution of the test statistic.

Common significance levels: $5\%,\,1\%,\,0.1\%$

2 Large-sample test for the proportion

Data is modeled by a sample count $Y \sim \text{Bin}(n, p)$. An unbiased point estimate for the population proportion p is the sample proportion $p = \frac{Y}{n}$.

For
$$H_0$$
: $p = p_0$ use the test statistic $Z = \frac{Y - np_0}{\sqrt{np_0q_0}} = \frac{\hat{p} - p_0}{\sqrt{p_0q_0/n}}$.

Approximate null distribution: $Z \stackrel{a}{\sim} N(0,1)$. Let $\Phi(z_{\alpha}) = 1 - \alpha$. Three different rejection regions for three composite alternative hypotheses

one-sided H_1 : $p > p_0$, $RR = \{Z \ge z_{\alpha}\}$, one-sided H_1 : $p < p_0$, $RR = \{Z \le -z_{\alpha}\}$, two-sided H_1 : $p \ne p_0$, $RR = \{Z \ge z_{\alpha/2} \text{ or } Z \le -z_{\alpha/2}\}$.

Power function

The power of the test (sensitivity): $Pw = P(reject H_0|H_1 \text{ is true}).$

Let H_0 : $p = p_0$, H_1 : $p = p_1$, and $p_1 > p_0$. The power function of the one-sided test

$$Pw(p_1) = P(\frac{Y - np_0}{\sqrt{np_0q_0}} \ge z_\alpha \mid p = p_1) \approx 1 - \Phi(\frac{z_\alpha \sqrt{p_0q_0} + \sqrt{n}(p_0 - p_1)}{\sqrt{p_1q_1}}), \quad p_1 > p_0.$$

Planning of sample size: given α and β , choose sample size n such that $\sqrt{n} = \frac{z_{\alpha}\sqrt{p_0q_0} + z_{\beta}\sqrt{p_1q_1}}{|p_1 - p_0|}$.

Example: extrasensory perception.

ESP test: guess the suits of n = 100 cards chosen at random with replacement from a deck of cards with four suits. Number of cards guessed correctly $Y \sim \text{Bin}(100, p)$

 $H_0: p = 0.25$ (pure guessing), $H_1: p > 0.25$ (ESP ability).

Rejection region at 5% significance level = $\{\frac{\hat{p}-0.25}{0.0433} \ge 1.645\} = \{\hat{p} \ge 0.32\} = \{Y \ge 32\}$. With a simple alternative $H_1: p = 0.30$ the power of the test is $1 - \Phi(\frac{1.645 \cdot 0.0433 - 0.5}{0.0458}) = 32\%$. The sample size required for the 90% power is $n = (\frac{1.645 \cdot 0.0433 + 1.28 \cdot 0.0458}{0.05})^2 = 675$.

P-value of the test

P-value is the probability of obtaining a test statistic value as extreme or more extreme than the observed one, given that H_0 is true.

For the significance level α , reject H_0 , if $P \leq \alpha$, and do not reject H_0 , if $P > \alpha$.

Two-sided P-value =
$$2 \times$$
 one-sided P-value

Example: extrasensory perception.

If the observed sample count is $Y_{\rm obs}=30$, then $Z_{\rm obs}=\frac{0.3-0.25}{0.0433}=1.15$ and a one-sided P-value is $P(Z \ge 1.15) = 12.5\%$. The result is not significant, do not reject H_0 .

3 Small-sample test for the proportion

With H_0 : $p = p_0$ the test statistic $Y \sim \text{Bin}(n,p)$ for small n we have to rely on the exact null distribution $Y \sim \text{Bin}(n, p_0)$. Three rejection regions

one-sided H_1 : $p > p_0$, $RR = \{Y \ge y_\alpha\}$,

one-sided H_1 : $p < p_0$, $RR = \{Y \le y'_{\alpha}\}$,

two-sided H_1 : $p \neq p_0$, $RR = \{Y \geq y_{\alpha/2} \text{ or } Y \leq y'_{\alpha/2}\}$.

Example: extrasensory perception.

ESP test: guess the suits of n=20 cards. Model: the number of cards guessed correctly is $Y\sim$ Bin(20, p). For $H_0: p = 0.25$ the null distribution is

One-sided alternative $H_1: p > 0.25$. Rejection region at 5% significance level = $\{Y \ge 9\}$. Notice that the exact significance level = 4.1%. Power function: $Pw(p_1) = P[Y \ge 9 | Y \sim Bin(20, p_1)]$

Warning for "fishing expeditions": the number of false positives in k tests at level α is Pois $(k\alpha)$.

4 Tests for the mean

Test H_0 : $\mu = \mu_0$ for continuous or discrete data. Large-sample test for mean is used when the population distribution is not necessarily normal but the sample size n is sufficiently large.

$$H_0$$
: $\mu = \mu_0$, test statistic $T = \frac{\bar{X} - \mu_0}{s_{\bar{X}}}$ with an approximate null distribution $T \stackrel{a}{\sim} N(0,1)$.

The one-sample t-test is used for small n, assuming that the population distribution is normal.

$$H_0$$
: $\mu = \mu_0$, test statistic: $T = \frac{\bar{X} - \mu_0}{s_{\bar{X}}}$ with an exact null distribution: $T \sim t_{n-1}$.

CI method of hypotheses testing:

reject H_0 : $\mu = \mu_0$ at 5% level if and only if a 95% confidence interval for the mean does not cover μ_0 .

5 Likelihood ratio test

A general method of finding asymptotically optimal tests (having the largest power for a given α).

Two simple hypotheses

For testing H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$ use the likelihood ratio $\Lambda = \frac{L(\theta_0)}{L(\theta_1)}$ as a test statistic. Large values of Λ suggest that H_0 explains the data set better than H_1 , while small Λ indicate that H_1 explains the data set better.

Likelihood raio rejection rule: reject
$$H_0$$
 for $\Lambda \leq \lambda_{\alpha}$.

Neyman-Pearson lemma: the likelihood ration test is optimal in the case of two simple hypothesis.

Nested hypotheses

With a pair of nested parameter sets $\Omega_0 \subset \Omega$ we get two composite alternatives, $H_0: \theta \in \Omega_0$ and $H_1: \theta \in \Omega \setminus \Omega_0$. Two nested hypotheses $H_0: \theta \in \Omega_0$, $H: \theta \in \Omega$, and two maximum likelihood estimates $\hat{\theta}_0 = \text{maximizes likelihood over } \theta \in \Omega_0$,

 $\hat{\theta} = \text{maximizes likelihood over } \theta \in \Omega.$

Generalized LRT: reject H_0 for small values of $\frac{L(\hat{\theta}_0)}{L(\hat{\theta})}$ or equivalently

GLRT: reject
$$H_0$$
 for large values of $\Delta = \log L(\hat{\theta}) - \log L(\hat{\theta}_0)$.

Approximate null distribution: $2\Delta \stackrel{a}{\sim} \chi_{\rm df}^2$, where $df = \dim(\Omega) - \dim(\Omega_0)$.

6 Pearson's chi-square test

Data: each observation belongs to one of J classes. A null hypothesis proposing a model for the data $H_0: (p_1, \ldots, p_J) = (p_1(\lambda), \ldots, p_J(\lambda))$ with unknown parameter $\lambda = (\lambda_1, \ldots, \lambda_r)$, $\dim(\Omega_0) = r$. Test how well a model fits the data using the MLE $\hat{\lambda}$ of λ describing H_0 . Data is summarized as the vector of observed counts (O_1, \ldots, O_J) .

Chi-square test statistic:
$$X^2 = \sum_{j=1}^{J} \frac{(O_j - E_j)^2}{E_j}$$
, expected cell counts $E_j = n \cdot p_j(\hat{\lambda})$.

Generalized likelihood ratio test approach: reject H_0 for large values of $2\Delta \approx X^2$ having an approximate null distribution χ^2_{J-1-r} .

$$df = (number\ of\ cells) - 1 - (number\ of\ independent\ parameters\ estimated\ from\ the\ data)$$

Since the chi-square test is approximate, all <u>expected</u> counts are recommended to be at least 5. If not, combine small cells and recalculate df.

Example: bird hops.

 H_0 : number of hops that a bird does between flights has a Geom(p) distribution. Using a MLE $\hat{p} = 0.358$ and J = 7 we obtain $X^2 = 1.86$. With df = 5 and P-value = 0.87 we do not reject the geometric distribution model for number of bird hops.

Example: gender ratio.

In a study made in Germany in 1889 the gender ratios for n=6115 families with 12 children were recorded. The data give Y_1, \ldots, Y_n numbers of boys in each family. Each Y_i has J=13 possible values. Here we discuss two models for the gender ratio.

Model 1. A symmetric binomial model: $Y \sim \text{Bin}(12, 0.5)$ corresponds to a simple null hypothesis H_0 : $p_j = \binom{12}{j} \cdot 2^{-12}, j = 0, 1, \dots, 12$. Expected cell counts $E_j = 6115 \cdot \binom{12}{j} \cdot 2^{-12}$.

$\operatorname{cell} j$	O_j	$E_j \mod 1$	$\frac{(O_j - E_j)^2}{E_i}$	$E_j \mod 2$	$\frac{(O_j - E_j)^2}{E_i}$
0	7	1.5	20.2	2.3	9.6
1	45	17.9	41.0	26.1	13.7
2	181	98.5	69.1	132.8	17.5
3	478	328.4	68.1	410.0	11.3
4	829	739.0	11.0	854.2	0.7
5	1112	1182.4	4.2	1265.6	18.6
6	1343	1379.5	1.0	1367.3	0.4
7	1033	1182.4	18.9	1085.2	2.5
8	670	739.0	6.4	628.1	2.8
9	286	328.4	5.5	258.5	2.9
10	104	98.5	0.3	71.8	14.4
11	24	17.9	2.1	12.1	11.7
12	3	1.5	1.5	0.9	4.9
Total	6115	6115	249.2	6115	110.5

Model 1 results: $X^2 = 249.2$, df = 12, $\chi^2_{12}(0.005) = 28.3$, reject H_0 at 0.5% level.

Model 2. More flexible model: $Y \sim \text{Bin}(12, p)$ with an unspecified p. It leads to a composite null hypothesis H_0 : $p_j = \binom{12}{j} \cdot p^j (1-p)^{12-j}, j=0,\ldots,12, 0 \le p \le 1$. The MLE and expected cell counts

$$\hat{p} = \frac{\text{number of boys}}{\text{number of children}} = \frac{1\cdot 45 + 2\cdot 181 + \ldots + 12\cdot 3}{6115\cdot 12} = 0.4808, \quad E_j = 6115 \cdot \binom{12}{j} \cdot \hat{p}^j \cdot (1-\hat{p})^{12-j} \ .$$

Model 2 results: observed test statistic $X^2 = 110.5$, r = 1, df = 11, $\chi^2_{11}(0.005) = 26.76$, reject H_0 at 0.5% level.

Conclusion: even more flexible model is needed to address large variation in the observed cell counts. Suggestion: let the probability of a male child p to differ from family to family.