Chapter 9. Testing hypotheses and assessing goodness of fit

1 Hypotheses testing

Find a rule based on data for choosing between two mutually exclusive hypotheses null hypothesis H_{0} : the effect of interest is zero, alternative H_{1} : the effect of interest is not zero.
H_{0} represents an established theory that must be discredited in order to demonstrate some effect H_{1}.

Two types of error

type I error $=$ false positive: reject H_{0} when it's true,
type II error $=$ false negative: accept H_{0} when it's false.

Test result	Negative: do not reject H_{0}	Positive: reject H_{0}
If H_{0} is true	True negative. Specificity $=1-\alpha$	False positive. Significance level α
If H_{1} is true	False negative $\beta=\mathrm{P}\left(\right.$ accept $\left.H_{0} \mid H_{1}\right)$	True positive. Sensitivity $=1-\beta$

Significance test

Test statistic $=\mathrm{a}$ function of the data with distinct typical values under H_{0} and H_{1}.
Rejection region (RR) of a test $=$ a set of values for the test statistic when H_{0} is rejected.

>	If test statistic and sample size are fixed, then either α or β gets larger when RR is changed.

Significance test approach to choose a rejection region:
fix an appropriate significance level α,
find a RR from $\alpha=\mathrm{P}\left(\right.$ test statistic $\left.\in \mathrm{RR} \mid H_{0}\right)$ using the null distribution of the test statistic.
Common significance levels: $5 \%, 1 \%, 0.1 \%$

2 Large-sample test for the proportion

Data is modeled by a sample count $Y \sim \operatorname{Bin}(n, p)$. An unbiased point estimate for the population proportion p is the sample proportion $p=\frac{Y}{n}$.

For $H_{0}: p=p_{0}$ use the test statistic $Z=\frac{Y-n p_{0}}{\sqrt{n p_{0} q_{0}}}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0} q_{0} / n}}$.
Approximate null distribution: $Z \stackrel{a}{\sim} \mathrm{~N}(0,1)$. Let $\Phi\left(z_{\alpha}\right)=1-\alpha$. Three different rejection regions for three composite alternative hypotheses
one-sided $H_{1}: p>p_{0}, \mathrm{RR}=\left\{Z \geq z_{\alpha}\right\}$,
one-sided $H_{1}: p<p_{0}, \mathrm{RR}=\left\{Z \leq-z_{\alpha}\right\}$,
two-sided $H_{1}: p \neq p_{0}, \mathrm{RR}=\left\{Z \geq z_{\alpha / 2}\right.$ or $\left.Z \leq-z_{\alpha / 2}\right\}$.

Power function

The power of the test (sensitivity): $\mathrm{Pw}=\mathrm{P}$ (reject $H_{0} \mid H_{1}$ is true).
Let $H_{0}: p=p_{0}, H_{1}: p=p_{1}$, and $p_{1}>p_{0}$. The power function of the one-sided test

$$
\operatorname{Pw}\left(p_{1}\right)=\mathrm{P}\left(\left.\frac{Y-n p_{0}}{\sqrt{n p_{0} q_{0}}} \geq z_{\alpha} \right\rvert\, p=p_{1}\right) \approx 1-\Phi\left(\frac{z_{\alpha} \sqrt{p_{0} q_{0}}+\sqrt{n}\left(p_{0}-p_{1}\right)}{\sqrt{p_{1} q_{1}}}\right), \quad p_{1}>p_{0} .
$$

Planning of sample size: given α and β, choose sample size n such that $\sqrt{n}=\frac{z_{\alpha} \sqrt{\overline{p_{0} q_{0}}+z_{\beta} \sqrt{p_{1} q_{1}}}}{\left|p_{1}-p_{0}\right|}$.

Example: extrasensory perception.

ESP test: guess the suits of $n=100$ cards chosen at random with replacement from a deck of cards with four suits. Number of cards guessed correctly $Y \sim \operatorname{Bin}(100, p)$
$H_{0}: p=0.25$ (pure guessing), $H_{1}: p>0.25$ (ESP ability).
Rejection region at 5% significance level $=\left\{\frac{\hat{p}-0.25}{0.0433} \geq 1.645\right\}=\{\hat{p} \geq 0.32\}=\{Y \geq 32\}$.
With a simple alternative $H_{1}: p=0.30$ the power of the test is $1-\Phi\left(\frac{1.645 \cdot 0.0433-0.5}{0.0458}\right)=32 \%$.
The sample size required for the 90% power is $n=\left(\frac{1.645 \cdot 0.0433+1 \cdot 28 \cdot 0.0458}{0.05}\right)^{2}=675$.

P -value of the test

P -value is the probability of obtaining a test statistic value as extreme or more extreme than the observed one, given that H_{0} is true.
For the significance level α, reject H_{0}, if $\mathrm{P} \leq \alpha$, and do not reject H_{0}, if $\mathrm{P}>\alpha$.

$$
\text { Two-sided P-value }=2 \times \text { one-sided P-value }
$$

Example: extrasensory perception.

If the observed sample count is $Y_{\text {obs }}=30$, then $Z_{\text {obs }}=\frac{0.3-0.25}{0.0433}=1.15$ and a one-sided P-value is $\mathrm{P}(Z \geq 1.15)=12.5 \%$. The result is not significant, do not reject H_{0}.

3 Small-sample test for the proportion

With $H_{0}: p=p_{0}$ the test statistic $Y \sim \operatorname{Bin}(n, p)$ for small n we have to rely on the exact null distribution $Y \sim \operatorname{Bin}\left(n, p_{0}\right)$. Three rejection regions
one-sided $H_{1}: p>p_{0}, \mathrm{RR}=\left\{Y \geq y_{\alpha}\right\}$,
one-sided $H_{1}: p<p_{0}, \mathrm{RR}=\left\{Y \leq y_{\alpha}^{\prime}\right\}$,
two-sided $H_{1}: p \neq p_{0}, \mathrm{RR}=\left\{Y \geq y_{\alpha / 2}\right.$ or $\left.Y \leq y_{\alpha / 2}^{\prime}\right\}$.

Example: extrasensory perception.

ESP test: guess the suits of $n=20$ cards. Model: the number of cards guessed correctly is $Y \sim$ $\operatorname{Bin}(20, p)$. For $H_{0}: p=0.25$ the null distribution is

$$
\operatorname{Bin}(20,0.25) \text { table: } \begin{array}{c|c|c|c|c}
y & 8 & 9 & 10 & 11 \\
\hline \mathrm{P}(Y \geq y) & .101 & .041 & .014 & 0.004
\end{array}
$$

One-sided alternative $H_{1}: p>0.25$. Rejection region at 5% significance level $=\{Y \geq 9\}$. Notice that the exact significance level $=4.1 \%$. Power function: $\operatorname{Pw}\left(p_{1}\right)=\mathrm{P}\left[Y \geq 9 \mid Y \sim \operatorname{Bin}\left(20, p_{1}\right)\right]$

p_{1}	0.27	0.3	0.4	0.5	0.6	0.7
$\operatorname{Pw}\left(p_{1}\right)$	0.064	0.113	0.404	0.748	0.934	0.995

Warning for "fishing expeditions": the number of false positives in k tests at level α is Pois $(k \alpha)$.

4 Tests for the mean

Test $H_{0}: \mu=\mu_{0}$ for continuous or discrete data. Large-sample test for mean is used when the population distribution is not necessarily normal but the sample size n is sufficiently large.

$$
H_{0}: \mu=\mu_{0}, \text { test statistic } T=\frac{\bar{X}-\mu_{0}}{s_{\bar{X}}} \text { with an approximate null distribution } T \stackrel{a}{\sim} \mathrm{~N}(0,1) .
$$

The one-sample t-test is used for small n, assuming that the population distribution is normal.

$$
H_{0}: \mu=\mu_{0} \text {, test statistic: } T=\frac{\bar{X}-\mu_{0}}{s_{\bar{X}}} \text { with an exact null distribution: } T \sim t_{n-1} .
$$

CI method of hypotheses testing:

reject $H_{0}: \mu=\mu_{0}$ at 5% level if and only if a 95% confidence interval for the mean does not cover μ_{0}.

5 Likelihood ratio test

A general method of finding asymptotically optimal tests (having the largest power for a given α).

Two simple hypotheses

For testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ use the likelihood ratio $\Lambda=\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}$ as a test statistic. Large values of Λ suggest that H_{0} explains the data set better than H_{1}, while small Λ indicate that H_{1} explains the data set better.

$$
\text { Likelihood raio rejection rule: reject } H_{0} \text { for } \Lambda \leq \lambda_{\alpha} \text {. }
$$

Neyman-Pearson lemma: the likelihood ration test is optimal in the case of two simple hypothesis.

Nested hypotheses

With a pair of nested parameter sets $\Omega_{0} \subset \Omega$ we get two composite alternatives, $H_{0}: \theta \in \Omega_{0}$ and H_{1} : $\theta \in \Omega \backslash \Omega_{0}$. Two nested hypotheses $H_{0}: \theta \in \Omega_{0}, H: \theta \in \Omega$, and two maximum likelihood estimates
$\hat{\theta}_{0}=$ maximizes likelihood over $\theta \in \Omega_{0}$,
$\hat{\theta}=$ maximizes likelihood over $\theta \in \Omega$.
Generalized LRT: reject H_{0} for small values of $\frac{L\left(\hat{\theta}_{0}\right)}{L(\hat{\theta})}$ or equivalently

$$
\text { GLRT: reject } H_{0} \text { for large values of } \Delta=\log L(\hat{\theta})-\log L\left(\hat{\theta}_{0}\right) .
$$

Approximate null distribution: $2 \Delta \stackrel{a}{\sim} \chi_{\mathrm{df}}^{2}$, where $\mathrm{df}=\operatorname{dim}(\Omega)-\operatorname{dim}\left(\Omega_{0}\right)$.

6 Pearson's chi-square test

Data: each observation belongs to one of J classes. A null hypothesis proposing a model for the data $H_{0}:\left(p_{1}, \ldots, p_{J}\right)=\left(p_{1}(\lambda), \ldots, p_{J}(\lambda)\right)$ with unknown parameter $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right), \operatorname{dim}\left(\Omega_{0}\right)=r$.
Test how well a model fits the data using the MLE $\hat{\lambda}$ of λ describing H_{0}. Data is summarized as the vector of observed counts $\left(O_{1}, \ldots, O_{J}\right)$.

$$
\text { Chi-square test statistic: } X^{2}=\sum_{j=1}^{J} \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}} \text {, expected cell counts } E_{j}=n \cdot p_{j}(\hat{\lambda}) \text {. }
$$

Generalized likelihood ratio test approach: reject H_{0} for large values of $2 \Delta \approx X^{2}$ having an approximate null distribution χ_{J-1-r}^{2}.

```
df = (number of cells) - 1- (number of independent parameters estimated from the data)
```

Since the chi-square test is approximate, all expected counts are recommended to be at least 5 . If not, combine small cells and recalculate df.

Example: bird hops.

H_{0} : number of hops that a bird does between flights has a $\operatorname{Geom}(p)$ distribution. Using a MLE $\hat{p}=0.358$ and $J=7$ we obtain $X^{2}=1.86$. With $\mathrm{df}=5$ and P-value $=0.87$ we do not reject the geometric distribution model for number of bird hops.

Example: gender ratio.

In a study made in Germany in 1889 the gender ratios for $n=6115$ families with 12 children were recorded. The data give Y_{1}, \ldots, Y_{n} numbers of boys in each family. Each Y_{i} has $J=13$ possible values. Here we discuss two models for the gender ratio.
Model 1. A symmetric binomial model: $Y \sim \operatorname{Bin}(12,0.5)$ corresponds to a simple null hypothesis $H_{0}: p_{j}=\binom{12}{j} \cdot 2^{-12}, j=0,1, \ldots, 12$. Expected cell counts $E_{j}=6115 \cdot\binom{12}{j} \cdot 2^{-12}$.

cell j	O_{j}	E_{j} model 1	$\frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}$	E_{j} model 2	$\frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}$
0	7	1.5	20.2	2.3	9.6
1	45	17.9	41.0	26.1	13.7
2	181	98.5	69.1	132.8	17.5
3	478	328.4	68.1	410.0	11.3
4	829	739.0	11.0	854.2	0.7
5	1112	1182.4	4.2	1265.6	18.6
6	1343	1379.5	1.0	1367.3	0.4
7	1033	1182.4	18.9	1085.2	2.5
8	670	739.0	6.4	628.1	2.8
9	286	328.4	5.5	258.5	2.9
10	104	98.5	0.3	71.8	14.4
11	24	17.9	2.1	12.1	11.7
12	3	1.5	1.5	0.9	4.9
Total	6115	6115	249.2	6115	110.5

Model 1 results: $X^{2}=249.2, \mathrm{df}=12, \chi_{12}^{2}(0.005)=28.3$, reject H_{0} at 0.5% level.
Model 2. More flexible model: $Y \sim \operatorname{Bin}(12, p)$ with an unspecified p. It leads to a composite null hypothesis $H_{0}: p_{j}=\binom{12}{j} \cdot p^{j}(1-p)^{12-j}, j=0, \ldots, 12,0 \leq p \leq 1$. The MLE and expected cell counts

$$
\hat{p}=\frac{\text { number of boys }}{\text { number of children }}=\frac{1 \cdot 45+2 \cdot 181+\ldots+12 \cdot 3}{6115 \cdot 12}=0.4808, \quad E_{j}=6115 \cdot\binom{12}{j} \cdot \hat{p}^{j} \cdot(1-\hat{p})^{12-j} .
$$

Model 2 results: observed test statistic $X^{2}=110.5, r=1, \mathrm{df}=11, \chi_{11}^{2}(0.005)=26.76$, reject H_{0} at 0.5% level.
Conclusion: even more flexible model is needed to address large variation in the observed cell counts. Suggestion: let the probability of a male child p to differ from family to family.

