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Chapter 14. Linear least squares

1 Simple linear regression model

A linear model for the random response Y = Y (x) on an independent variable X = x. For a given
set of values (x1, . . . , xn) of the independent variable put

Yi = β0 + β1xi + εi, i = 1, . . . , n,

assuming that the noise (ε1, . . . , εn) has independent N(0,σ2) random components. Given the data
(y1, . . . , yn), the model is characterized by the likelihood function

L(β0, β1, σ
2) =

n∏
i=1

1√
2πσ

exp
{
− (yi − β0 − β1xi)

2

2σ2

}
= (2π)−n/2σ−n exp

{
−

n∑
i=1

(yi − β0 − β1xi)
2

2σ2

}
of three unknown model parameters β0, β1, σ2. Summary statistics:

sample covariance sxy = 1
n−1

∑
(xi − x̄)(yi − ȳ),

sample variances s2
x = 1

n−1

∑
(xi − x̄)2, s2

y = 1
n−1

∑
(yi − ȳ)2,

sample correlation coefficient r = sxy
sxsy

.

Least squares estimates
Regression lines: true y = β0 + β1x and fitted y = b0 + b1x. We want to find (b0, b1) such that the
observed responses yi are approximated by the predicted responses ŷi = b0 + b1xi in an optimal way.
Least squares method: find (b0, b1) minimizing the sum of squares S(b0, b1) =

∑
(yi − ŷi)2.

From ∂S/∂b0 = 0 and ∂S/∂b1 = 0 we get the so-called Normal Equations:{
nb0 + b1

∑n
i=1 xi =

∑n
i=1 yi

b0

∑n
i=1 xi + b1

∑n
i=1 x

2
i =

∑n
i=1 xiyi

⇒

{
b1 = n

∑
xiyi−(

∑
xi)(

∑
yi)

n
∑
x2i−(

∑
xi)2

= r · sy
sx

b0 = ȳ − b1x̄

Observe that the least square estimates (b0, b1) are the maximum likelihood estimates of (β0, β1).
Least square regression line: y = ȳ + r sy

sx
(x− x̄).

Least square predicted responses: ŷi − ȳ = r sy
sx

(xi − x̄).

Least square estimates are not robust against outliers: outliers exert leverage on the fitted line, p. 522.

Coefficient of determination
SST =

∑
(yi − ȳ)2 = (n− 1)s2

y df = n− 1

SSR =
∑

(ŷi − ȳ)2 = (n− 1)b2
1s

2
x df = 1 SST = SSE + SSR

SSE =
∑

(yi − ŷi)2 = (n− 1)s2
y(1− r2) df = n− 2

Corrected MLE of σ2: s2 = SSE
n−2

= n−1
n−2

s2
y(1− r2)

Coefficient of determination r2 = SSR
SST

= 1− SSE
SST

is the proportion of variation in Y explained by main
factor X. The coefficient of determination r2 has a more transparent meaning than correlation r.
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2 Confidence intervals and hypothesis testing

Unbiased and consistent estimates: b0 ∼ N(β0, σ
2
0), σ2

0 =
σ2·

∑
x2i

n(n−1)s2x
; b1 ∼ N(β1, σ

2
1), σ2

1 = σ2

(n−1)s2x
.

Weak dependence between the two estimates Cov(b0, b1) = − σ2·x̄
(n−1)s2x

: negative, if x̄ > 0, and positive,
if x̄ < 0. Exact sampling distributions

b0 − β0

sb0
∼ tn−2, sb0 =

s
√∑

x2
i

sx
√
n(n− 1)

,
b1 − β1

sb1
∼ tn−2, sb1 =

s

sx
√
n− 1

Exact 100(1− α)% CI for βi: bi ± tα/2,n−2 · sbi

Hypothesis testing H0: β1 = β10: test statistic T = b1−β10
sb1

, exact null distribution T ∼ tn−2.

Model utility test
H0: β1 = 0 (no relationship between X and Y ), test statistic T = b1/sb1 , null distribution T ∼ tn−2.

Zero intercept hypothesis
H0: β0 = 0, test statistic T = b0/sb0 , null distribution T ∼ tn−2.

Intervals for individual observations
Given x predict the value y for the random variable Y = β0+β1 ·x+ε. Its expected value µ = β0+β1 ·x
has the least square estimate µ̂ = b0 + b1 · x. The standard error of µ̂ is computed as the square root
of Var(µ̂) = σ2

n
+ σ2

n−1
· (x−x̄

sx
)2.

Exact 100(1− α)% confidence interval for the mean µ: b0 + b1x± tα/2,n−2 · s
√

1
n

+ 1
n−1

(x−x̄
sx

)2

Exact 100(1− α)% prediction interval for y: b0 + b1x± tα/2,n−2 · s
√

1 + 1
n

+ 1
n−1

(x−x̄
sx

)2

Prediction interval has wider limits since Var(Y − µ̂) = Var(µ̂) + σ2 = σ2(1 + 1
n

+ 1
n−1
· (x−x̄

sx
)2).

To illustrate draw confidence bands around the regression line both for the individual observation y
and the mean µ.

Assessing the fit
Properties of the least square residuals ei = yi − ŷi:

e2
1 + . . .+ e2

n is at minimum,
e1 + . . .+ en = 0,
x1e1 + . . .+ xnen = 0,
ŷ1e1 + . . .+ ŷnen = 0,

meaning that ei are uncorrelated with xi and ei are uncorrelated with ŷi.
Residual ei has normal distribution with zero mean and

Var(ei) = σ2
(
1−

∑
k(xk − xi)2

n(n− 1)s2
x

)
, Cov(ei, ej) = −σ2 ·

∑
k(xk − xi)(xk − xj)
n(n− 1)s2

x

To test the normality assumption use the normal distribution plot for the standardized residuals ei
si

,

where si = s
√

1−
∑

k(xk−xi)2
n(n−1)s2x

are the estimated standard deviations of ei.

The expected plot of the standardized residuals versus xi is a horizontal blur (linearity), variance does
not depend on x (homoscedasticity).
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Example: flow rate vs stream depth.
Page 517-518: the scatter plot is slightly non-linear. The residual plot has the U-shape. Page 518-519:
the scatter log-log plot is closer to linear and the residual plot is horizontal.

Example: breast cancer
Page 520-521: absolute mortality y vs population size x produces a heteroscedastic residual plot. Page
523: normal probability plot is not linear.
Transformed variables

√
y vs

√
x: homoscedastic residual plot on page 521. Page 524: normal proba-

bility plot is closer to linear.

3 Multiple regression

Linear regression model Y = β0 + β1x1 + . . .+ βp−1xp−1 + ε with a homoscedastic noise ε ∼ N(0,σ2).
Data: observations (y1, . . . , yn) are realizations of n independent random variables

Y1 = β0 + β1x1,1 + . . .+ βp−1x1,p−1 + ε1, . . . , Yn = β0 + β1xn,1 + . . .+ βp−1xn,p−1 + εn.

In the matrix notation the vector y = (y1, . . . , yn)T is a realization of Y = Xβ + ε, where

Y = (Y1, . . . , Yn)T , β = (β0, . . . , βp−1)T , ε = (ε1, . . . , εn)T ,

and X is the so called design matrix

X =

 1 x1,1 . . . x1,p−1

. . . . . . . . . . . .
1 xn,1 . . . xn,p−1

 .

Least square estimates b = (b0, . . . , bp−1)T minimize S(b) = ‖y −Xb‖2.

Normal equations XTXb = XTy: if rank(X) = p, then b = (XTX)−1XTy.

Least squares multiple regression: predicted responses ŷ = Xb = Py, where P = X(XTX)−1XT .

Covariance matrix for the least square estimates Σbb =
(

Cov(bi, bj)
)p−1

i,j=0
= σ2(XTX)−1.

An unbiased estimate of σ2 is given by s2 = ‖y− ŷ‖2/(n− p).

Standard errors sbi = s
√
sii, where sii are the diagonal elements of the matrix (XTX)−1.

Exact sampling distributions bi−βi
sbi
∼ tn−p, i = 1, . . . , p− 1.

Residuals e = y − ŷ = (I − P)y have a covariance matrix Σee = ‖Cov(ei, ej)‖ = σ2(I − P).
Standardized residuals yi−ŷi

s
√

1−pii
.

Coefficient of multiple determination R2 = 1 − SSE
SST

, where SSE = ‖y − ŷ‖2, SST = (n − 1)s2
y. The

problem with R2 is that it increases even if irrelevant variables are added to the model.

Adjusted coefficient of multiple determination R2
a = 1− n−1

n−p ·
SSE
SST

is more appropriate as it punishes for irrelevant variables.
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Example: flow rate vs stream depth.
Quadratic model y = β0 + β1x+ β2x

2. Page 543: residuals shows no signs of systematic misfit. Linear
and quadratic terms are statistically significant (n = 10)

Coefficient Estimate Standard Error t Value
β0 1.68 1.06 1.52
β1 −10.86 4.52 −2.40
β2 23.54 4.27 5.51

Emperical relationship developed in a region might break down,
if extrapolated to a wider region in which no data been observed

Example: heart catheter.
Catheter length depending on child’s height and weight. Page 546: pairwise scatterplots, n = 12. Two
simple linear regressions

Estimate Height t Value Weight t Value
b0(sb0) 12.1(4.3) 2.8 25.6(2.0) 12.8
b1(sb1) 0.60(0.10) 6.0 0.28(0.04) 7.0
s 4.0 3.8
r2(R2

a) 0.78 (0.76) 0.80 (0.78)

Page 547: plots of standardized residuals. Multiple regression model L = β0 + β1H + β2W brings

b0 = 21, sb0 = 8.8, b0/sb0 = 2.39,
b1 = 0.20, sb1 = 0.36, b1/sb1 = 0.56,
b2 = 0.19, sb2 = 0.17, b2/sb2 = 1.12,
s = 3.9, R2 = 0.81, R2

a = 0.77.

Can not reject neither H1 : β1 = 0 nor H2 : β2 = 0. Different meaning of the slope parameters in the
simple and multiple regression models. Here β1 is the expected change in L when H increased by one
unit and W held constant.

Collinearity problem: height and weight have a strong linear relationship.

Fitted plane has a well resolved slope along the line about which the (H,W ) points fall and poorly
resolved slopes along the H and W axes.
Page 549: standard residuals from the multiple regression. Conclusion: little or no gain from adding
W to the simple regression model model with an independent variable H.
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