Chapter 14. Linear least squares

1 Simple linear regression model

A linear model for the random response $Y=Y(x)$ on an independent variable $X=x$. For a given set of values $\left(x_{1}, \ldots, x_{n}\right)$ of the independent variable put

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

assuming that the noise $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ has independent $\mathrm{N}\left(0, \sigma^{2}\right)$ random components. Given the data $\left(y_{1}, \ldots, y_{n}\right)$, the model is characterized by the likelihood function

$$
L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{2 \sigma^{2}}\right\}=(2 \pi)^{-n / 2} \sigma^{-n} \exp \left\{-\sum_{i=1}^{n} \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{2 \sigma^{2}}\right\}
$$

of three unknown model parameters $\beta_{0}, \beta_{1}, \sigma^{2}$. Summary statistics:
sample covariance $s_{x y}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$,
sample variances $s_{x}^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}, s_{y}^{2}=\frac{1}{n-1} \sum\left(y_{i}-\bar{y}\right)^{2}$,
sample correlation coefficient $r=\frac{s_{x y}}{s_{x} s_{y}}$.

Least squares estimates

Regression lines: true $y=\beta_{0}+\beta_{1} x$ and fitted $y=b_{0}+b_{1} x$. We want to find $\left(b_{0}, b_{1}\right)$ such that the observed responses y_{i} are approximated by the predicted responses $\hat{y}_{i}=b_{0}+b_{1} x_{i}$ in an optimal way. Least squares method: find $\left(b_{0}, b_{1}\right)$ minimizing the sum of squares $S\left(b_{0}, b_{1}\right)=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$.

From $\partial S / \partial b_{0}=0$ and $\partial S / \partial b_{1}=0$ we get the so-called Normal Equations:

$$
\left\{\begin{array} { l }
{ n b _ { 0 } + b _ { 1 } \sum _ { i = 1 } ^ { n } x _ { i } = \sum _ { i = 1 } ^ { n } y _ { i } } \\
{ b _ { 0 } \sum _ { i = 1 } ^ { n } x _ { i } + b _ { 1 } \sum _ { i = 1 } ^ { n } x _ { i } ^ { 2 } = \sum _ { i = 1 } ^ { n } x _ { i } y _ { i } }
\end{array} \Rightarrow \left\{\begin{array}{l}
b_{1}=\frac{n \sum x_{i} y_{i}-\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{i}}=r \cdot \frac{s_{y}}{s_{x}} \\
b_{0}=\bar{y}-b_{1} \bar{x}
\end{array}\right.\right.
$$

Observe that the least square estimates $\left(b_{0}, b_{1}\right)$ are the maximum likelihood estimates of $\left(\beta_{0}, \beta_{1}\right)$.
Least square regression line: $y=\bar{y}+r \frac{s_{y}}{s_{x}}(x-\bar{x})$.

$$
\text { Least square predicted responses: } \hat{y}_{i}-\bar{y}=r \frac{s_{y}}{s_{x}}\left(x_{i}-\bar{x}\right) \text {. }
$$

Least square estimates are not robust against outliers: outliers exert leverage on the fitted line, p. 522.

Coefficient of determination

$$
\begin{array}{lll}
\mathrm{SST}=\sum\left(y_{i}-\bar{y}\right)^{2}=(n-1) s_{y}^{2} & \mathrm{df}=n-1 & \\
\mathrm{SSR}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}=(n-1) b_{1}^{2} s_{x}^{2} & \mathrm{df}=1 & \mathrm{SST}=\mathrm{SSE}+\mathrm{SSR} \\
\mathrm{SSE}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}=(n-1) s_{y}^{2}\left(1-r^{2}\right) & \mathrm{df}=n-2 &
\end{array}
$$

$$
\text { Corrected MLE of } \sigma^{2}: \quad s^{2}=\frac{\text { SSE }}{n-2}=\frac{n-1}{n-2} s_{y}^{2}\left(1-r^{2}\right)
$$

Coefficient of determination $r^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}$ is the proportion of variation in Y explained by main factor X. The coefficient of determination r^{2} has a more transparent meaning than correlation r.

2 Confidence intervals and hypothesis testing

Unbiased and consistent estimates: $b_{0} \sim \mathrm{~N}\left(\beta_{0}, \sigma_{0}^{2}\right), \sigma_{0}^{2}=\frac{\sigma^{2} \cdot \sum x_{i}^{2}}{n(n-1) s_{x}^{2}} ; b_{1} \sim \mathrm{~N}\left(\beta_{1}, \sigma_{1}^{2}\right), \sigma_{1}^{2}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}$.
Weak dependence between the two estimates $\operatorname{Cov}\left(b_{0}, b_{1}\right)=-\frac{\sigma^{2} \cdot \bar{x}}{(n-1) s_{x}^{2}}$: negative, if $\bar{x}>0$, and positive, if $\bar{x}<0$. Exact sampling distributions

$$
\begin{gathered}
\frac{b_{0}-\beta_{0}}{s_{b_{0}}} \sim t_{n-2}, \quad s_{b_{0}}=\frac{s \sqrt{\sum x_{i}^{2}}}{s_{x} \sqrt{n(n-1)}}, \quad \frac{b_{1}-\beta_{1}}{s_{b_{1}}} \sim t_{n-2}, \quad s_{b_{1}}=\frac{s}{s_{x} \sqrt{n-1}} \\
\text { Exact } 100(1-\alpha) \% \text { CI for } \beta_{i}: \quad b_{i} \pm t_{\alpha / 2, n-2} \cdot s_{b_{i}}
\end{gathered}
$$

Hypothesis testing $H_{0}: \beta_{1}=\beta_{10}$: test statistic $T=\frac{b_{1}-\beta_{10}}{s_{b_{1}}}$, exact null distribution $T \sim t_{n-2}$. Model utility test
$H_{0}: \beta_{1}=0\left(\right.$ no relationship between X and Y), test statistic $T=b_{1} / s_{b_{1}}$, null distribution $T \sim t_{n-2}$. Zero intercept hypothesis
$H_{0}: \beta_{0}=0$, test statistic $T=b_{0} / s_{b_{0}}$, null distribution $T \sim t_{n-2}$.

Intervals for individual observations

Given x predict the value y for the random variable $Y=\beta_{0}+\beta_{1} \cdot x+\epsilon$. Its expected value $\mu=\beta_{0}+\beta_{1} \cdot x$ has the least square estimate $\hat{\mu}=b_{0}+b_{1} \cdot x$. The standard error of $\hat{\mu}$ is computed as the square root of $\operatorname{Var}(\hat{\mu})=\frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{n-1} \cdot\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}$.

> Exact $100(1-\alpha) \%$ confidence interval for the mean $\mu: b_{0}+b_{1} x \pm t_{\alpha / 2, n-2} \cdot s \sqrt{\frac{1}{n}+\frac{1}{n-1}\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}}$
> Exact $100(1-\alpha) \%$ prediction interval for $y: b_{0}+b_{1} x \pm t_{\alpha / 2, n-2} \cdot s \sqrt{1+\frac{1}{n}+\frac{1}{n-1}\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}}$

Prediction interval has wider limits since $\operatorname{Var}(Y-\hat{\mu})=\operatorname{Var}(\hat{\mu})+\sigma^{2}=\sigma^{2}\left(1+\frac{1}{n}+\frac{1}{n-1} \cdot\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}\right)$. To illustrate draw confidence bands around the regression line both for the individual observation y and the mean μ.

Assessing the fit

Properties of the least square residuals $e_{i}=y_{i}-\hat{y}_{i}$:
$e_{1}^{2}+\ldots+e_{n}^{2}$ is at minimum,
$e_{1}+\ldots+e_{n}=0$,
$x_{1} e_{1}+\ldots+x_{n} e_{n}=0$,
$\hat{y}_{1} e_{1}+\ldots+\hat{y}_{n} e_{n}=0$,
meaning that e_{i} are uncorrelated with x_{i} and e_{i} are uncorrelated with \hat{y}_{i}.
Residual e_{i} has normal distribution with zero mean and

$$
\operatorname{Var}\left(e_{i}\right)=\sigma^{2}\left(1-\frac{\sum_{k}\left(x_{k}-x_{i}\right)^{2}}{n(n-1) s_{x}^{2}}\right), \quad \operatorname{Cov}\left(e_{i}, e_{j}\right)=-\sigma^{2} \cdot \frac{\sum_{k}\left(x_{k}-x_{i}\right)\left(x_{k}-x_{j}\right)}{n(n-1) s_{x}^{2}}
$$

To test the normality assumption use the normal distribution plot for the standardized residuals $\frac{e_{i}}{s_{i}}$, where $s_{i}=s \sqrt{1-\frac{\sum_{k}\left(x_{k}-x_{i}\right)^{2}}{n(n-1) s_{x}^{2}}}$ are the estimated standard deviations of e_{i}.
The expected plot of the standardized residuals versus x_{i} is a horizontal blur (linearity), variance does not depend on x (homoscedasticity).

Example: flow rate vs stream depth.

Page 517-518: the scatter plot is slightly non-linear. The residual plot has the U-shape. Page 518-519: the scatter log-log plot is closer to linear and the residual plot is horizontal.

Example: breast cancer

Page 520-521: absolute mortality y vs population size x produces a heteroscedastic residual plot. Page 523: normal probability plot is not linear.
Transformed variables \sqrt{y} vs \sqrt{x} : homoscedastic residual plot on page 521. Page 524: normal probability plot is closer to linear.

3 Multiple regression

Linear regression model $Y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}+\epsilon$ with a homoscedastic noise $\epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$. Data: observations $\left(y_{1}, \ldots, y_{n}\right)$ are realizations of n independent random variables

$$
Y_{1}=\beta_{0}+\beta_{1} x_{1,1}+\ldots+\beta_{p-1} x_{1, p-1}+\epsilon_{1}, \ldots, Y_{n}=\beta_{0}+\beta_{1} x_{n, 1}+\ldots+\beta_{p-1} x_{n, p-1}+\epsilon_{n}
$$

In the matrix notation the vector $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ is a realization of $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where

$$
\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}, \quad \boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)^{T}, \quad \boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{T}
$$

and \mathbf{X} is the so called design matrix

$$
\mathbf{X}=\left(\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, p-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n, 1} & \ldots & x_{n, p-1}
\end{array}\right)
$$

Least square estimates $\mathbf{b}=\left(b_{0}, \ldots, b_{p-1}\right)^{T}$ minimize $S(\mathbf{b})=\|\mathbf{y}-\mathbf{X b}\|^{2}$.
Normal equations $\mathbf{X}^{T} \mathbf{X b}=\mathbf{X}^{T} \mathbf{y}$: if $\operatorname{rank}(\mathbf{X})=p$, then $\mathbf{b}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$.
Least squares multiple regression: predicted responses $\hat{\mathbf{y}}=\mathbf{X b}=\mathbf{P y}$, where $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$.
Covariance matrix for the least square estimates $\Sigma_{b b}=\left(\operatorname{Cov}\left(b_{i}, b_{j}\right)\right)_{i, j=0}^{p-1}=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$.

$$
\text { An unbiased estimate of } \sigma^{2} \text { is given by } s^{2}=\|\mathbf{y}-\hat{\mathbf{y}}\|^{2} /(n-p) .
$$

Standard errors $s_{b_{i}}=s \sqrt{s_{i i}}$, where $s_{i i}$ are the diagonal elements of the matrix $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$.

$$
\text { Exact sampling distributions } \frac{b_{i}-\beta_{i}}{s_{b_{i}}} \sim t_{n-p}, i=1, \ldots, p-1
$$

Residuals $\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}=(\mathbf{I}-\mathbf{P}) \mathbf{y}$ have a covariance matrix $\Sigma_{e e}=\left\|\operatorname{Cov}\left(e_{i}, e_{j}\right)\right\|=\sigma^{2}(\mathbf{I}-\mathbf{P})$. Standardized residuals $\frac{y_{i}-\hat{y}_{i}}{s \sqrt{1-p_{i i}}}$.

Coefficient of multiple determination $R^{2}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}$, where $\operatorname{SSE}=\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}$, $\mathrm{SST}=(n-1) s_{y}^{2}$. The problem with R^{2} is that it increases even if irrelevant variables are added to the model.

Adjusted coefficient of multiple determination $R_{a}^{2}=1-\frac{n-1}{n-p} \cdot \frac{\text { SSE }}{\text { SST }}$
is more appropriate as it punishes for irrelevant variables.

Example: flow rate vs stream depth.

Quadratic model $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$. Page 543: residuals shows no signs of systematic misfit. Linear and quadratic terms are statistically significant ($n=10$)

Coefficient	Estimate	Standard Error	t Value
β_{0}	1.68	1.06	1.52
β_{1}	-10.86	4.52	-2.40
β_{2}	23.54	4.27	5.51

Emperical relationship developed in a region might break down, if extrapolated to a wider region in which no data been observed

Example: heart catheter.

Catheter length depending on child's height and weight. Page 546: pairwise scatterplots, $n=12$. Two simple linear regressions

Estimate	Height	t Value	Weight	t Value
$b_{0}\left(s_{b_{0}}\right)$	$12.1(4.3)$	2.8	$25.6(2.0)$	12.8
$b_{1}\left(s_{b_{1}}\right)$	$0.60(0.10)$	6.0	$0.28(0.04)$	7.0
s	4.0		3.8	
$r^{2}\left(R_{a}^{2}\right)$	$0.78(0.76)$		$0.80(0.78)$	

Page 547: plots of standardized residuals. Multiple regression model $L=\beta_{0}+\beta_{1} H+\beta_{2} W$ brings

$$
\begin{array}{lll}
b_{0}=21, & s_{b_{0}}=8.8, & b_{0} / s_{b_{0}}=2.39 \\
b_{1}=0.20, & s_{b_{1}}=0.36, & b_{1} / s_{b_{1}}=0.56 \\
b_{2}=0.19, & s_{b_{2}}=0.17, & b_{2} / s_{b_{2}}=1.12 \\
s=3.9, & R^{2}=0.81, & R_{a}^{2}=0.77
\end{array}
$$

Can not reject neither $H_{1}: \beta_{1}=0$ nor $H_{2}: \beta_{2}=0$. Different meaning of the slope parameters in the simple and multiple regression models. Here β_{1} is the expected change in L when H increased by one unit and W held constant.

Collinearity problem: height and weight have a strong linear relationship.
Fitted plane has a well resolved slope along the line about which the (H, W) points fall and poorly resolved slopes along the H and W axes.
Page 549: standard residuals from the multiple regression. Conclusion: little or no gain from adding W to the simple regression model model with an independent variable H.

