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Introduction to Bayesian inference

1 Bayesian approach

Main idea of the Baysian approach: treat the population parameter 6 is a random variable. Two
distributions of #

prior distribution density ¢g(f) = knowledge on 6 before data is collected,

posterior distribution h(f|z) = knowledge on 6 updated after the data x is collected.

Bayes formula h(f|z) = _f(””q‘fzi!;((’)

’Posterior o likelihood x prior‘

Marginal distribution of X has density ¢(z) = [ f(2]0)g(0)df. This is the likelihood f(z|6) of the
data weighed over different values of € using the prior distribution.

Example. IQ measurement.

A randomly chosen individual has IQ 6. Its prior distribution is  ~ N(100,225) describing population
as a whole: average IQ is m = 100 and standard deviation v = 15. The result of an IQ measurement
has distribution X ~ N(6, 100): no systematic error and random error ¢ = 10. We have
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and h(6|r) is proportional to g(0)f(x|0). Put v = —7—, shrinkage factor. Since
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we conclude that the posterior distribution is normal
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If observed 1Q is « = 130, then the posterior distribution is 6 ~ N(120.7, 69.2).

2 Conjugate priors

Two families of probability distributions G and H

’G is a family of conjugate priors to H, if a G-prior and a H-likelihood give a G-posterior

Examples of conjugate priors

Data distribution Prior Posterior distribution Comments
(X1,...,X0), X; ~ N(0,02) i~ N(m,v?) | N(yum 4 (1 — 4,)%; 7a0?) Vo = =L

X ~ Bin(n,p) p ~ Beta(a,b) | Beta(a + x,b+n — x) counts plus ...
(X1,..., X)) ~Mn(n;p1,...,p.) | D(ag,...,q) | D(ag +21,...,00 + ) ... pseudocounts
X ~ Pois(p) p~T(a,\) MNa+z,A+1) posterior variance ...
X ~ Exp(p) p~T(a,\) IMa+1,A+x) ... is always smaller




Beta distribution Beta(a, b) density f(p) = ~tpo=1(1 — p)=1 0 < p < 1.

L(a)I'(b)
-, o2 = %, pseudocounts a > 0, b > 0.

Dirichlet distribution D(ay, ..., ;) density f(pi,... ,pr):%p‘fl Lo opert

Mean and variance p =

with non-negative p; 4+ ...+ p, = 1. Positive pseudocounts ay, ..., a,, ag = a1 + ... + .
Marginal distributions
p; ~ Beta(aj, a0 — o), j =1,...,7, and negative covariances Cov(py, p2) = _aQ?égil)‘
0

Example. Thumbtack experiment. Beta-binomial model: number of base landings X ~ Bin(n, p)
for n tossings of the thumbtack with p = P(landing on base).

My personal Beta prior p ~ B(ag, by) with ug ~ 0.4, o9 ~ 0.1 = pseudocounts ag = 10, by = 15.
Experiment 1: ny = 10 tosses, counts x; = 2, n; — x; = 8, posterior distribution Beta(12, 23) with

mean p = = = 0.34 and standard deviation o; = 0.08.
Experlment 2: ny = 40 tosses, counts xo = 9, ny — x5 = 31, posterior distribution Beta(21, 54) with
mean p = = = (.28 and standard deviation oy = 0.05.

3 Bayesian estimation

Action a = {assign value a to unknown parameter 6}. Optimal action depends on the choice of the
loss function (6, a). Bayes action minimizes posterior risk

R(a|m):/l(0,a)h(9|x)d0 or  R(alz) = Zl@a (0]2).

MAP = maximum a posteriori probability estimate is based on

Zero-one loss function: I(0, a) = 1ggza)

Posterior risk = probability of misclassification R(a|z) = >,, h(0|z) =1 — h(a|z)
Omap = 0 that maximizes h(f]z).
For the non-informative prior g(#) = const, we get h(f|x) x f(x]0) and Onap = Omie-

PME = posterior mean estimate fyme = E(6]z) is based on

Squared error loss: 1(0,a) = (6 — a)?

R(a|z) = E((0 — a)?|z) = Var(0|z) + [E(f|z) — a]>.

Example. Loaded die experiment. A possibly loaded die is rolled 18 times:
211 453 324 142 343 515.

If the prior distribution is non informative D(1,1,1,1,1,1), then MAP = MLE are given by the sample
proportions (14—8, 13—8, %, o r ﬁ, 0). Not good: it excludes sixes in the future.

With the same prior D(l,l,l,l,l,l) the PME are
Pr=2 =021, Py = & =017, ps = & = 021, py = & = 0.21, s = & = 0.17, s = & = 0.04.



4 Credibility interval

Confidence interval : 0 is an unknown constant and a CI is random

P(0(X) <0 <6(X))=1-q.
Credibility interval: 6 is random and a Crl is nonrandom. It is computed from the posterior
distribution P(fy(z) < 0 < 01(z)) =1 — .

Example. IQ measurement.
Given n =1, X ~ N(u;100) a 95% CI for p is 130 & 1.96 - 10 = 130 £ 19.6.
Posterior distribution of p is N(120.7;69.2)

95% Crl for p is 120.7 £ 1.96 - +/69.2 = 120.7 + 16.3.

5 Hypotheses testing

Choose between Hy: 6 = 6y and Hy: 0 = 0,
given prior probabilities P(Hy) = my, P(H;) = m and the likelihoods f(z|6y), f(z|6:).
Cost function:

Measurement outcome ‘ Decision ‘ Hj true ‘ H, true
X €eRR Accept Hy 0 1
X ¢ RR Accept H; Co 0

Average cost for a given rejection region RR

C[)’/T()P(X € RR|90) + 617T1P(X §é RR‘@l) =171 —|—/
z€RR

(cmrof(xwo) - cmf(xyel))dx,

where the integral is taken over the RR. The rejection region minimizing the average cost is

RR = {z: como f(x|6p) < crmif(z|61)}

h(0o|z)
h(01|z)

Reject Hy if small likelihood ratio ;glg;’g < 21)7;; or small posterior odds

< &,
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Example. Rape case study.
The defendant A, age 37, local, is charged with rape, Hy: A is innocent, Hy: A is guilty.
Prior probability m = m.
Evidence F with conditionally independent components

El: DNA matCh7 P<E1|H0) = 200,080,000’ P(E1|H1):1 BETTER THAT TEN P
E5: A is not recognized by the victim s pERsoNEEsos
Ej5: alibi supported by the girlfriend INNOGENT SUFFER 1
Assumptions — Sk WiLLiav Brackstone (1765)
P(Ey|H,) = 0.25, P(Es|Hy) = 0.5
Posterior odds ratio
P(Ho‘E) _ 7TOP(E|H0) _ 71'()P(E1|H())P(E2|H0)P(E3‘Ho) _ 0 018
P(H\|[E)  mP(E[H1)  mP(Er|Hy)P(E2|H1)P(Es|Hy) J10-
R'ejeCt HO if ) ) Prosecutor’s fallacy: P(Ho|E) = P(E|Ho), which is only true if P(E) = 7.
@ . _cost for unpunished crime () ()18 Example: o = m1 = 1/2, P(E|Ho) ~ 0, P(E|H,) ~ 1.
co cost for punishing an innocent




