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Chapter 9. Testing hypotheses and assessing goodness of fit

1 Hypotheses testing

Find a rule based on data for choosing between two mutually exclusive hypotheses
null hypothesis H0: the effect of interest is zero,
alternative H1: the effect of interest is not zero.

H0 represents an established theory that must be discredited in order to demonstrate some effect H1.

Two types of error
type I error = false positive: reject H0 when it’s true,
type II error = false negative: accept H0 when it’s false.

Test result Negative: do not reject H0 Positive: reject H0

If H0 is true True negative. Specificity = 1− α False positive. Significance level α
If H1 is true False negative β = P(accept H0|H1) True positive. Sensitivity = 1− β

Significance test
Test statistic = a function of the data with distinct typical values under H0 and H1.
Rejection region (RR) of a test = a set of values for the test statistic when H0 is rejected.

If test statistic and sample size are fixed, then either α or β gets larger when RR is changed.

Significance test approach to choose a rejection region:
fix an appropriate significance level α,
find a RR from α = P(test statistic ∈ RR|H0) using the null distribution of the test statistic.

Common significance levels: 5%, 1%, 0.1%

2 Large-sample test for the proportion

Data is modeled by a sample count Y ∼ Bin(n, p). An unbiased point estimate for the population
proportion p is the sample proportion p = Y

n
.

For H0: p = p0 use the test statistic Z = Y−np0√
np0q0

= p̂−p0√
p0q0/n

.

Approximate null distribution: Z
a∼ N(0,1). Let Φ(zα) = 1 − α. Three different rejection regions for

three composite alternative hypotheses
one-sided H1: p > p0, RR = {Z ≥ zα},
one-sided H1: p < p0, RR = {Z ≤ −zα},
two-sided H1: p 6= p0, RR = {Z ≥ zα/2 or Z ≤ −zα/2}.
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Power function
The power of the test (sensitivity): Pw = P(reject H0|H1 is true).
Let H0: p = p0, H1: p = p1, and p1 > p0. The power function of the one-sided test

Pw(p1) = P( Y−np0√
np0q0

≥ zα | p = p1) ≈ 1− Φ(
zα
√
p0q0+

√
n(p0−p1)

√
p1q1

), p1 > p0.

Planning of sample size: given α and β, choose sample size n such that
√
n =

zα
√
p0q0+zβ

√
p1q1

|p1−p0| .

Example: extrasensory perception.
ESP test: guess the suits of n = 100 cards chosen at random with replacement from a deck of cards
with four suits. Number of cards guessed correctly Y ∼ Bin(100, p)

H0 : p = 0.25 (pure guessing), H1 : p > 0.25 (ESP ability).
Rejection region at 5% significance level = { p̂−0.25

0.0433
≥ 1.645} = {p̂ ≥ 0.32} = {Y ≥ 32}.

With a simple alternative H1 : p = 0.30 the power of the test is 1− Φ(1.645·0.433−0.5
0.458

) = 32%.
The sample size required for the 90% power is n = (1.645·0.433+1.28·0.458

0.05
)2 = 675.

P-value of the test
P-value is the probability of obtaining a test statistic value as extreme or more extreme than the
observed one, given that H0 is true.
For the significance level α, reject H0, if P ≤ α, and do not reject H0, if P > α.

Two-sided P-value = 2× one-sided P-value

Example: extrasensory perception.
If the observed sample count is Yobs = 30, then Zobs = 0.3−0.25

0.0433
= 1.15 and a one-sided P-value is

P(Z ≥ 1.15) = 12.5%. The result is not significant, do not reject H0.

3 Small-sample test for the proportion

With H0: p = p0 the test statistic Y ∼ Bin(n, p) for small n we have to rely on the exact null
distribution Y ∼ Bin(n, p0). Three rejection regions

one-sided H1: p > p0, RR = {Y ≥ yα},
one-sided H1: p < p0, RR = {Y ≤ y′α},
two-sided H1: p 6= p0, RR = {Y ≥ yα/2 or Y ≤ y′α/2}.

Example: extrasensory perception.
ESP test: guess the suits of n = 20 cards. Model: the number of cards guessed correctly is Y ∼
Bin(20, p). For H0 : p = 0.25 the null distribution is

Bin(20,0.25) table:
y 8 9 10 11

P(Y ≥ y) .101 .041 .014 0.004

One-sided alternative H1 : p > 0.25. Rejection region at 5% significance level = {Y ≥ 9}. Notice that
the exact significance level = 4.1%. Power function: Pw(p1) = P[Y ≥ 9|Y ∼ Bin(20, p1)]

p1 0.27 0.3 0.4 0.5 0.6 0.7
Pw(p1) 0.064 0.113 0.404 0.748 0.934 0.995

Warning for “fishing expeditions”: the number of false positives in k tests at level α is Pois (kα).
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4 Tests for the mean

Test H0: µ = µ0 for continuous or discrete data. Large-sample test for mean is used when the
population distribution is not necessarily normal but the sample size n is sufficiently large.

H0: µ = µ0, test statistic T = X̄−µ0

sX̄
with an approximate null distribution T

a∼ N(0,1).

The one-sample t-test is used for small n, assuming that the population distribution is normal.

H0: µ = µ0, test statistic: T = X̄−µ0

sX̄
with an exact null distribution: T ∼ tn−1.

CI method of hypotheses testing:
reject H0: µ=µ0 at 5% level if and only if a 95% confidence interval for the mean does not cover µ0.

5 Likelihood ratio test

A general method of finding asymptotically optimal tests (having the largest power for a given α).

Two simple hypotheses
For testing H0: θ = θ0 against H1: θ = θ1 use the likelihood ratio Λ = L(θ0)

L(θ1)
as a test statistic. Large

values of Λ suggest that H0 explains the data set better than H1, while small Λ indicate that H1

explains the data set better.

Likelihood raio rejection rule: reject H0 for Λ ≤ λα.

Neyman-Pearson lemma: the likelihood ration test is optimal in the case of two simple hypothesis.

Nested hypotheses
With a pair of nested parameter sets Ω0 ⊂ Ω we get two composite alternatives, H0: θ ∈ Ω0 and H1:
θ ∈ Ω \ Ω0. Two nested hypotheses H0: θ ∈ Ω0, H: θ ∈ Ω, and two maximum likelihood estimates

θ̂0 = maximizes likelihood over θ ∈ Ω0,
θ̂ = maximizes likelihood over θ ∈ Ω.

Generalized LRT: reject H0 for small values of L(θ̂0)

L(θ̂)
or equivalently

GLRT: reject H0 for large values of ∆ = logL(θ̂)− logL(θ̂0).

Approximate null distribution: 2∆
a∼ χ2

df , where df = dim(Ω) – dim(Ω0).

6 Pearson’s chi-square test

Data: each observation belongs to one of J classes. A null hypothesis proposing a model for the data
H0: (p1, . . . , pJ) = (p1(λ), . . . , pJ(λ)) with unknown parameter λ = (λ1, . . . , λr), dim(Ω0) = r.

Test how well a model fits the data using the MLE λ̂ of λ describing H0. Data is summarized as the
vector of observed counts (O1, . . . , OJ).

Chi-square test statistic: X2=
∑J

j=1
(Oj−Ej)2

Ej
, expected cell counts Ej = n · pj(λ̂).
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Generalized likelihood ratio test approach: reject H0 for large values of 2∆ ≈ X2 having an approxi-
mate null distribution χ2

J−1−r.

df = (number of cells) – 1 – (number of independent parameters estimated from the data)

Since the chi-square test is approximate, all expected counts are recommended to be at least 5. If
not, combine small cells and recalculate df.

Example: bird hops.
H0 : number of hops that a bird does between flights has a Geom(p) distribution. Using a MLE
p̂ = 0.358 and J = 7 we obtain X2 = 1.86. With df = 5 and P -value = 0.87 we do not reject the
geometric distribution model for number of bird hops.

Example: gender ratio.
In a study made in Germany in 1889 the gender ratios for n = 6115 families with 12 children were
recorded. The data give Y1, . . . , Yn numbers of boys in each family. Each Yi has J = 13 possible values.
Here we discuss two models for the gender ratio.
Model 1. A symmetric binomial model: Y ∼ Bin(12, 0.5) corresponds to a simple null hypothesis
H0: pj =

(
12
j

)
· 2−12, j = 0, 1, . . . , 12. Expected cell counts Ej = 6115 ·

(
12
j

)
· 2−12.

cell j Oj Ej model 1
(Oj−Ej)2

Ej
Ej model 2

(Oj−Ej)2

Ej

0 7 1.5 20.2 2.3 9.6
1 45 17.9 41.0 26.1 13.7
2 181 98.5 69.1 132.8 17.5
3 478 328.4 68.1 410.0 11.3
4 829 739.0 11.0 854.2 0.7
5 1112 1182.4 4.2 1265.6 18.6
6 1343 1379.5 1.0 1367.3 0.4
7 1033 1182.4 18.9 1085.2 2.5
8 670 739.0 6.4 628.1 2.8
9 286 328.4 5.5 258.5 2.9

10 104 98.5 0.3 71.8 14.4
11 24 17.9 2.1 12.1 11.7
12 3 1.5 1.5 0.9 4.9

Total 6115 6115 249.2 6115 110.5

Model 1 results: X2 = 249.2, df = 12, χ2
12(0.005) = 28.3, reject H0 at 0.5% level.

Model 2. More flexible model: Y ∼ Bin(12, p) with an unspecified p. It leads to a composite null
hypothesis H0: pj =

(
12
j

)
· pj(1− p)12−j, j = 0, . . . , 12, 0 ≤ p ≤ 1. The MLE and expected cell counts

p̂ = number of boys
number of children

= 1·45+2·181+...+12·3
6115·12

= 0.4808, Ej = 6115 ·
(

12
j

)
· p̂j · (1− p̂)12−j .

Model 2 results: observed test statistic X2 = 110.5, r = 1, df = 11, χ2
11(0.005) = 26.76, reject H0 at

0.5% level.
Conclusion: even more flexible model is needed to address large variation in the observed cell counts.
Suggestion: let the probability of a male child p to differ from family to family.
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