Chapter 10. Summarizing data

1 Empirical probability distribution

Population cumulative distribution function $F(x)=\mathrm{P}(X \leq x)$. For an IID sample $\left(X_{1}, \ldots, X_{n}\right)$ define

$$
\text { Empirical cdf } F_{n}(x)=\text { proportion of } X_{i} \leq x
$$

For a fixed x the sample proportion $F_{n}(x)$ is an unbiased and consistent estimate of the population proportion $F(x)$.
After the sample is collected $F_{n}(x)$ is a cdf with mean \bar{X} and variance $\frac{n-1}{n} s^{2}$.
Lifelength T with cdf $F(t)=\mathrm{P}(T \leq t)$ and pdf $f(t)=F^{\prime}(t)$.

$$
\text { Survival function } S(t)=\mathrm{P}(T>t)=1-F(t)
$$

Empirical survival function $S_{n}(t)=1-F_{n}(t)$ is the proportion of the data greater than t.

$$
\text { Hazard function } h(t)=f(t) / S(t)
$$

Mortality rate at age t : as δ tends to zero,

$$
P(t<T \leq t+\delta \mid T \geq t)=\frac{F(t+\delta)-F(t)}{S(t)} \sim \delta \cdot h(t)
$$

It is also the negative of the slope of the log survival function:

$$
h(t)=-\frac{d}{d t} \log S(t)=-\frac{d}{d t} \log (1-F(t)) .
$$

Example. Guinea pigs. Guinea pigs infected with tubercle bacillus, p. 349-353: 5 treatment and one control group. Fig 10.2: survival function. Fig 10.3: log-survival function.

The flat hazard function $h(t)=\lambda$ corresponds to the exponential distribution $\operatorname{Exp}(\lambda)$

2 Density estimation

Histogram: plot observed counts O_{j} for cells of width h. Small h - ragged histogram, large h - obscured histogram, find a balanced h.
Scaled histogram: plot $f_{h}(x)=\frac{1}{n h} O_{j}$ for x in cell j to ensure $\int f_{h}(x) d x=1$.
Kernel density estimate with bandwidth h produces a smooth curve

$$
f_{h}(x)=\frac{1}{n h} \sum \phi\left(\frac{x-X_{i}}{h}\right), \text { where } \phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} .
$$

Example. Male heights.

If hm is a column of 24 male heights, the for a given bandwidth h the following matstat code produces a plot for the kernel density estimate

$$
\begin{aligned}
& \mathrm{x}=160: 0.1: 210 ; \mathrm{L}=\operatorname{length}(\mathrm{x}) ; \\
& \mathrm{f}=\operatorname{normpdf}\left(\left(\operatorname{ones}(24,1)^{*} \mathrm{x}-\mathrm{hm}{ }^{*} \operatorname{ones}(1, \mathrm{~L})\right) / \mathrm{h}\right) ; \\
& \mathrm{fh}=\operatorname{sum}(\mathrm{f}) /\left(24^{*} \mathrm{~h}\right) ; \operatorname{plot}(\mathrm{x}, \mathrm{fh})
\end{aligned}
$$

Stem-and-leaf plot for 24 male heights indicates the distribution shape plus gives the numerical information:

$$
\begin{aligned}
& 17: 056678899 \\
& 18: 0000112346 \\
& 19: 229
\end{aligned}
$$

3 Q-Q plots

$$
p \text {-quantile of a distribution } x_{p}=F_{-1}(p), 0 \leq p \leq 1
$$

Quantile x_{p} cuts off proportion p of smallest values

$$
\mathrm{P}\left(X \leq x_{p}\right)=F\left(x_{p}\right)=F\left(F_{-1}(p)\right)=p
$$

Ordered sample $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$

$$
\begin{aligned}
F_{n}\left(X_{(k)}\right)=\frac{k}{n} \text { and } F_{n}\left(X_{(k)}-\epsilon\right)=\frac{k-1}{n} \\
\qquad X_{(k)} \text { is the empirical }\left(\frac{k-0.5}{n}\right) \text {-quantile }
\end{aligned}
$$

Two samples $\left(X_{1}, \ldots, X_{n}\right),\left(Y_{1}, \ldots, Y_{m}\right)$
test H_{0} : two PDs are equal
by Q -Q plot $=$ plot Y-quantiles against X-quantiles
Accept H_{0} if the scatter plot is close to the bisector
equal quantiles $=$ equal distributions

$$
\text { Linear model: } Y=a+b \cdot X \text { in distribution }
$$

$$
\mathrm{P}(X \leq x)=\mathrm{P}(Y \leq a+b x)
$$

Linear model implies linear Q-Q plot $y_{p}=a+b x_{p}$
Normal probability plot. To test visually the normality hypothesis $H_{0}: \mathrm{PD}=\mathrm{N}\left(\mu, \sigma^{2}\right)$ with unspecified parameters plot the normal quantiles $\Phi_{-1}\left(\frac{k-0.5}{n}\right)$ against $X_{(k)}$.
Accept H_{0} with $\mu=a, \sigma=b$, if the scatterplot is close to the straight line $x=a+b y$.
If normality does not hold, draw a straight line via empirical lower and upper quartiles to detect a light tails profile or heavy tails profile.

Kurtosis $\beta_{2}=\frac{E(X-\mu)^{4}}{\sigma^{4}}$, sample kurtosis: $b_{2}=\frac{1}{s^{4} n} \sum\left(X_{i}-\bar{X}\right)^{4}$
For the normal distribution $\beta_{2}=3$. Leptokurtic distribution: $b_{2}>3$ (heavy tails). Platykurtic distribution: $b_{2}<3$ (light tails).

Example. Male heights. Summary statistics: $\bar{X}=181.46, \hat{M}=180, b_{1}=1.05, b_{2}=4.31$.
Heights of adult males are positively skewed: P (height of a random male $<$ the average) $>50 \%$.
For the $\operatorname{Gamma}(\alpha, \lambda)$ distribution, $\beta_{1}=\frac{2}{\sqrt{\alpha}}, \beta_{2}=3+\frac{6}{\alpha}$

4 Measures of location

Central point of a distribution: either population mean μ, or mode, or median M defined as $M=x_{0.5}$, if distribution is continuous.

$$
\text { Population median } M: \mathrm{P}(X<M)=\mathrm{P}(X>M)
$$

Sample median: $\hat{M}=X_{(k)}$, if $n=2 k-1$ and $\hat{M}=\frac{X_{(k)}+X_{(k+1)}}{2}$, if $n=2 k$.
The sample median \hat{M} is a robust estimate, that is insensitive to outliers, while the sample mean \bar{X} is sensitive to outliers.

Nonparametric sign test

Given an iid sample test $H_{0}: M=M_{0}$ against the two-sided alternative $H_{1}: M \neq M_{0}$. No parametric model is assumed. The sign test statistic $Y=\sum_{i=1}^{n} I\left(X_{i} \leq M_{0}\right)$ counts the number of observations below the null hypothesis value. Under the null hypothesis

$$
\mathrm{P}\left(X_{(k)}<M_{0}<X_{(n-k+1)}\right)=\mathrm{P}(k \leq Y \leq n-k),
$$

and $Y \sim \operatorname{Bin}(n, 0.5)$.

$$
\left(X_{(k)}, X_{(n-k+1)}\right)=\text { nonparametric } 100 \cdot \mathrm{P}(k \leq Y \leq n-k) \% \text { CI for the population median. }
$$

Reject H_{0} if M_{0} falls outside the corresponding confidence interval $\left(X_{(k)}, X_{(n-k+1)}\right)$.
Example. For $Y \in \operatorname{Bin}(n, 0.5)$ with $n=25$ we have

$$
\begin{array}{c|c|c|c|c|c|c|c}
\text { for } k= & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline \mathrm{P}(k \leq Y \leq n-k)= & 99.6 & 98.6 & 95.7 & 89.2 & 77.0 & 57.6 & 31.0
\end{array}
$$

Thus $\left(X_{(8)}, X_{(18)}\right)$ is a $95.7 \% \mathrm{CI}$ for the median.

Trimmed means

Measures of location for the central portion of the data

$$
\alpha \text {-trimmed mean } \bar{X}_{\alpha}=\text { sample mean without } \frac{n \alpha}{2} \text { smallest and } \frac{n \alpha}{2} \text { largest observations }
$$

Example. Male heights. Ignoring 20% of largest and 20% of smallest observations we compute $\bar{X}_{0.4}=180.36$.

Nonparametric bootstrap

IID sampling from the empirical distribution $=$ sampling with replacement from x_{1}, \ldots, x_{n}.
Simulate many new samples of size n to get an idea of the sampling distribution of an estimate like trimmed mean, sample median, s.

5 Measures of dispersion

Sample variance s^{2} and sample range $R=X_{(n)}-X_{(1)}$ are sensitive to outliers.
Robust measures of dispersion:
interquartile range $\mathrm{IQR}=x_{0.75}-x_{0.25}$
$\mathrm{MAD}=$ median of abs dev $\left|X_{i}-\hat{M}\right|, i=1, \ldots, n$.
Three estimates of σ in $\mathrm{N}\left(\mu, \sigma^{2}\right): s, \frac{\mathrm{IQR}}{1.35}, \frac{\mathrm{MAD}}{0.675}$
In the $\mathrm{N}\left(\mu, \sigma^{2}\right)$ case $\mathrm{IQR}=\left(\mu+\sigma \Phi_{-1}(0.75)\right)-\left(\mu+\sigma \Phi_{-1}(0.25)\right)=1.35 \sigma$, because $\Phi_{-1}(0.75)=0.675$.
Moreover, MAD $=0.675 \sigma$, since $\mathrm{P}(|X-\mu| \leq 0.675 \sigma)=0.5$.

Boxplot

box center $=$ median
upper edge of the box $=$ upper quartile (UQ)
lower edge of the box $=$ lower quartile (LQ)
upper whisker end $=\{$ max data point $\leq \mathrm{UQ}+1.5 \mathrm{IQR}\}$
lower whisker end $=\{$ min data point $\geq \mathrm{LQ}-1.5 \mathrm{IQR}\}$
dots $=\{$ data $\geq \mathrm{UQ}+1.5 \mathrm{IQR}\}$ and $\{$ data $\leq \mathrm{LQ}-1.5 \mathrm{IQR}\}$
Convenient to compare different samples. See for example Fig 10.14, p.374: daily SO_{2} concentration data.

