Chapter 11. Comparing two samples

Data consist of two IID samples $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{m}\right)$ from two populations with (μ_{x}, σ_{x}) and (μ_{y}, σ_{y}).
The difference $(\bar{X}-\bar{Y})$ is an unbiased estimate of $\left(\mu_{x}-\mu_{y}\right)$. Questions: find an interval estimate of $\left(\mu_{x}-\mu_{y}\right)$, and test the null hypothesis of equality $H_{0}: \mu_{x}=\mu_{y}$.

1 Two independent samples

If $\left(X_{1}, \ldots, X_{n}\right)$ is independent from $\left(Y_{1}, \ldots, Y_{m}\right)$, then $\operatorname{Var}(\bar{X}-\bar{Y})=\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}$. Therefore, an unbiased estimate of $\operatorname{Var}(\bar{X}-\bar{Y})$ is $s_{\bar{x}}^{2}+s_{\bar{y}}^{2}$.

In the special case of equal variances $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma^{2}$, the pooled sample variance

$$
s_{p}^{2}=\frac{n-1}{n+m-2} \cdot s_{x}^{2}+\frac{m-1}{n+m-2} \cdot s_{y}^{2}
$$

is an unbiased estimate of the variance: $\mathrm{E}\left(s_{p}^{2}\right)=\sigma^{2}$. Notice that $\operatorname{Var}(\bar{X}-\bar{Y})=\sigma^{2} \cdot \frac{n+m}{n m}$, and $s_{\bar{X}-\bar{Y}}^{2}=s_{p}^{2} \cdot \frac{n+m}{n m}$ gives another unbiased estimate of $\operatorname{Var}(\bar{X}-\bar{Y})$.

Large sample test for the difference

If n and m are large use a normal approximation $\bar{X}-\bar{Y} \stackrel{a}{\sim} \mathrm{~N}\left(\mu_{x}-\mu_{y}, s_{\bar{x}}^{2}+s_{\bar{y}}^{2}\right)$.
Approximate CI for $\left(\mu_{x}-\mu_{y}\right)$ is given by $\bar{X}-\bar{Y} \pm z_{\alpha / 2} \cdot \sqrt{s_{\bar{x}}^{2}+s_{\bar{y}}^{2}}$.
Dichotomous data: $X \sim \operatorname{Bin}\left(n, p_{1}\right), Y \sim \operatorname{Bin}\left(m, p_{2}\right)$. Normal approximation:
$\hat{p}_{1}-\hat{p}_{2} \stackrel{a}{\sim} \mathrm{~N}\left(p_{1}-p_{2}, \frac{\hat{p}_{1} \hat{q}_{1}}{n-1}+\frac{\hat{p}_{2} \hat{q}_{2}}{m-1}\right)$ implies an approximate CI for $\left(p_{1}-p_{2}\right): \hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n-1}+\frac{\hat{p}_{2} \hat{q}_{2}}{m-1}}$.

Example: swedish polls.

Two consecutive poll results \hat{p}_{1} and \hat{p}_{2} with $n \approx m \approx 5000$ interviews. A change in support to Social Democrats at $\hat{p}_{1} \approx 0.4$ is significant if

$$
\left|\hat{p}_{1}-\hat{p}_{2}\right|>1.96 \cdot \sqrt{2 \cdot \frac{0.4 \cdot 0.6}{5000}} \approx 1.9 \%
$$

This should be compared with the one-sample hypothesis testing $H_{0}: p=0.4$ vs $H_{0}: p \neq 0.4$. The approximate 95% CI for p is $\hat{p} \pm 1.96 \cdot \sqrt{\frac{\hat{p} \hat{q}}{n-1}}$ and if $\hat{p} \approx 0.4$, then the difference is significant if

$$
\left|\hat{p}-p_{0}\right|>1.96 \cdot \sqrt{\frac{0.4 \cdot 0.6}{5000}} \approx 1.3 \% .
$$

Two-sample t-test

Assumption: two normal distributions $X \sim \mathrm{~N}\left(\mu_{x}, \sigma^{2}\right), Y \sim \mathrm{~N}\left(\mu_{y}, \sigma^{2}\right)$ with equal variances.

$$
\text { Exact distribution } \frac{(\bar{X}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)}{s_{p}} \cdot \sqrt{\frac{n m}{n+m}} \sim t_{m+n-2}
$$

Exact CI for $\left(\mu_{x}-\mu_{y}\right)$ is given by $\bar{X}-\bar{Y} \pm t_{m+n-2}\left(\frac{\alpha}{2}\right) \cdot s_{p} \cdot \sqrt{\frac{n+m}{n m}}$.

Two sample t-test, equal population variances

$$
H_{0}: \mu_{x}=\mu_{y}, \text { null distribution } \frac{\bar{X}-\bar{Y}}{s_{p}} \cdot \sqrt{\frac{n m}{n+m}} \sim t_{m+n-2}
$$

If variances are different: $X \sim \mathrm{~N}\left(\mu_{x}, \sigma_{x}^{2}\right), Y \sim \mathrm{~N}\left(\mu_{y}, \sigma_{y}^{2}\right)$, then $\frac{(\bar{X}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{s_{\bar{x}}^{2}+s_{y}^{2}}}$ has an approximate t_{df}-distribution with $\mathrm{df}=\frac{\left(s_{x}^{2}+s_{y}^{2}\right)^{2}}{s_{\bar{x}}^{4} / n+s_{y}^{/} / m}-2$ degrees of freedom.

Example: iron retention.

Percentage of Fe^{2+} and Fe^{3+} retained by mice data for the concentration 1.2 millimolar: p. 396

$$
\begin{aligned}
& \mathrm{Fe}^{2+}: n=18, \bar{X}=9.63, s_{x}=6.69, s_{\bar{x}}=1.58 \\
& \mathrm{Fe}^{3+}: m=18, \bar{Y}=8.20, s_{y}=5.45, s_{\bar{y}}=1.28
\end{aligned}
$$

Boxplots and normal probability plots on p .397 show that distributions are not normal.
Test $H_{0}: \mu_{x}=\mu_{y}$ using observed $\frac{\bar{X}-\bar{Y}}{\sqrt{s_{\bar{x}}^{2}+s_{\bar{y}}^{2}}}=0.7$. Large sample test: approximate two-sided P-value $=$ 0.48 .

After the log transformation the data looks more like normally distributed, boxplots and normal probability plots on p. 398-399. The transformed data:

$$
\begin{aligned}
& n=18, \bar{X}=2.09, s_{x}=0.659, s_{\bar{x}}=0.155, \\
& m=18, \bar{Y}=1.90, s_{y}=0.574, s_{\bar{y}}=0.135 .
\end{aligned}
$$

Two sample t-test
equal variances: $T=0.917, \mathrm{df}=34, P=0.3656$,
unequal variances: $T=0.917, \mathrm{df}=33, P=0.3658$.

Wilcoxon rank sum test

Nonparametric test assuming general population distributions F and G. Test $H_{0}: F=G$ against H_{1} : $F \neq G$.

Non-parametric inference approach: pool the samples and replace the data by ranks
Test statistics
either $R_{x}=$ sum of the ranks of X observations or $R_{y}=\binom{n+m+1}{2}-R_{x}$ the sum of Y ranks.
Null distributions of R_{x} and R_{y} depend only on sample sizes n and m : table 8, p. A21-23.
$\mathrm{E}\left(R_{x}\right)=\frac{n(m+n+1)}{2}, \mathrm{E}\left(R_{y}\right)=\frac{m(m+n+1)}{2}, \operatorname{Var}\left(R_{x}\right)=\operatorname{Var}\left(R_{y}\right)=\frac{m n(m+n+1)}{12}$.
For $n \geq 10, m \geq 10$ apply the normal approximations for the null distributions.

Example: student heights

In class experiment: $\mathrm{X}=$ females, $n=3, \mathrm{Y}=$ males, $m=3$. Compute R_{x}, and find one-sided P-value for the one-sided alternative.

2 Paired samples

Examples of paired observations:
different drugs for two patients matched by age, sex,
a fruit weighed before and after shipment,
two types of tires tested on the same car.
Paired sample: IID vectors $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$. Transform to a one-dimensional sample taking the differences $D_{i}=X_{i}-Y_{i}$. Estimate $\mu_{x}-\mu_{y}$ using the sample mean $\bar{D}=\bar{X}-\bar{Y}$.

Correlation coefficient $\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}$. We have $\rho>0$ for paired observations and $\rho=0$ for independent observations.
Smaller standard error if $\rho>0: \operatorname{Var}(\bar{D})=\operatorname{Var}(\bar{X})+\operatorname{Var}(\bar{Y})-2 \sigma_{\bar{x}} \sigma_{\bar{y}} \rho<\operatorname{Var}(\bar{X})+\operatorname{Var}(\bar{Y})$.

Ex 4: platelet aggregation

Paired measurements of $n=11$ individuals before smoking, Y_{i}, and after smoking, X_{i}. Using the data estimate correlation as $\rho \approx 0.90$.

Y_{i}	X_{i}	D_{i}	Signed rank
25	27	2	+2
25	29	4	+3.5
27	37	10	+6
44	56	12	+7
30	46	16	+10
67	82	15	+8.5
53	57	4	+3.5
53	80	27	+11
52	61	9	+5
60	59	-1	-1
28	43	15	+8.5

Assuming $D \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ apply the one-sample t-test to $H_{0}: \mu_{x}=\mu_{y}$ against $H_{1}: \mu_{x} \neq \mu_{y}$.
Observed test statistic $\frac{\bar{D}}{s_{\bar{D}}}=\frac{10.27}{2.40}=4.28$. A two-sided P-value $=2^{*}(1-\operatorname{tcdf}(4.28,10))=0.0016$.

The sign test

No assumption except IID sampling. Non-parametric test of $H_{0}: M_{D}=0$ against $H_{1}: M_{D} \neq 0$.
Test statistics: either $Y_{+}=\sum 1_{\left\{D_{i}>0\right\}}$ or $Y_{-}=\sum 1_{\left\{D_{i}<0\right\}}$. Both have null distribution $\operatorname{Bin}(n, 0.5)$.
Ties $D_{i}=0$: discard tied observations reduce n or dissolve the ties by randomization

Ex 4: platelet aggregation

Observed test statistic $Y_{-}=1$. A two-sided P-value $=2\left[(0.5)^{11}+11(0.5)^{11}\right]=0.012$.

Wilcoxon signed rank test

Non-parametric test of H_{0} : distribution of D is symmetric about $M_{D}=0$.
Test statistics: either $W_{+}=\sum \operatorname{rank}\left(\left|D_{i}\right|\right) \cdot I\left(D_{i}>0\right)$ or $W_{-}=\sum \operatorname{rank}\left(\left|D_{i}\right|\right) \cdot I\left(D_{i}<0\right)$.
Assuming no ties we get $W_{+}+W_{-}=\frac{n(n+1)}{2}$. Null distributions of W_{+}and W_{-}are equal. This distribution is given in Table 9, p. A24, whatever is the population distribution of D.
Normal approximation of the null distribution with $\mu_{W}=\frac{n(n+1)}{4}$, and $\sigma_{W}^{2}=\frac{n(n+1)(2 n+1)}{24}$ for $n \geq 20$.
The signed rank test uses more data information than the sign test but requires symmetric distribution of differences.

Example: platelet aggregation

Observed value of the test statistic $W_{-}=1$. It gives a two-sided P -value $=0.002$ (check symmetry).

3 Influence of external factors

Double-blind, randomized controlled experiments are used to balance out external factors like placebo effect.
Other examples of external factors: time, background variables like temperature, locations of test animals or test plots in a field.

Example: portocaval shunt

Portocaval shunt is an operation used to lower blood pressure in the liver

Enthusiasm level	Marked	Moderate	None
No controls	24	7	1
Nonrandomized controls	10	3	2
Randomized controls	0	1	3

Example: platelet aggregation

Further parts of the experimental design: control group 1 smoked lettuce cigarettes, control group 2 "smoked" unlit cigarettes.

Simpson's paradox

Hospital A and has higher overall death rate than hospital B. However, if we split the data in two parts, patient in good and bad conditions, in both parts A is better.

Hospital:	A	B	$\mathrm{A}+$	$\mathrm{B}+$	$\mathrm{A}-$	$\mathrm{B}-$
Died	63	16	6	8	57	8
Survived	2037	784	594	592	1443	192
Total	2100	800	600	600	1500	200
Death Rate	.030	.020	.010	.013	.038	.040

Patient condition: good + or poor - , is a confounding factor:
Hospital performance \leftarrow Patient condition \rightarrow Death rate
WIKIPEDIA. In statistics, a confounding variable (also confounding factor, a confound, or confounder) is an extraneous variable in a statistical model that correlates (directly or inversely) with both the dependent variable and the independent variable.
A spurious relationship is a perceived relationship between an independent variable and a dependent variable that has been estimated incorrectly because the estimate fails to account for a confounding factor. The incorrect estimation suffers from omitted-variable bias.

