
Serik Sagitov, Chalmers Tekniska Högskola, February 18, 2015

Chapter 11. Comparing two samples

Data consist of two IID samples (X1, . . . , Xn) and (Y1, . . . , Ym) from two populations with (µx, σx)
and (µy, σy).
The difference (X̄ − Ȳ ) is an unbiased estimate of (µx − µy). Questions: find an interval estimate of
(µx − µy), and test the null hypothesis of equality H0: µx = µy.

1 Two independent samples

If (X1, . . . , Xn) is independent from (Y1, . . . , Ym), then Var(X̄− Ȳ ) = σ2
x

n
+

σ2
y

m
. Therefore, an unbiased

estimate of Var(X̄ − Ȳ ) is s2
x̄ + s2

ȳ.
In the special case of equal variances σ2

x = σ2
y = σ2, the pooled sample variance

s2
p =

n− 1

n+m− 2
· s2

x +
m− 1

n+m− 2
· s2

y

is an unbiased estimate of the variance: E(s2
p) = σ2. Notice that Var(X̄ − Ȳ ) = σ2 · n+m

nm
, and

s2
X̄−Ȳ = s2

p · n+m
nm

gives another unbiased estimate of Var(X̄ − Ȳ ).

Large sample test for the difference
If n and m are large use a normal approximation X̄ − Ȳ a∼ N(µx − µy, s2

x̄ + s2
ȳ).

Approximate CI for (µx − µy) is given by X̄ − Ȳ ± zα/2 ·
√
s2
x̄ + s2

ȳ.

Dichotomous data: X ∼ Bin(n, p1), Y ∼ Bin(m, p2). Normal approximation:

p̂1− p̂2
a∼ N(p1−p2,

p̂1q̂1
n−1

+ p̂2q̂2
m−1

) implies an approximate CI for (p1−p2): p̂1− p̂2±zα/2 ·
√

p̂1q̂1
n−1

+ p̂2q̂2
m−1

.

Example: swedish polls.
Two consecutive poll results p̂1 and p̂2 with n ≈ m ≈ 5000 interviews. A change in support to Social
Democrats at p̂1 ≈ 0.4 is significant if

|p̂1 − p̂2| > 1.96 ·
√

2 · 0.4 · 0.6
5000

≈ 1.9%.

This should be compared with the one-sample hypothesis testing H0 : p = 0.4 vs H0 : p 6= 0.4. The

approximate 95% CI for p is p̂± 1.96 ·
√

p̂q̂
n−1

and if p̂ ≈ 0.4, then the difference is significant if

|p̂− p0| > 1.96 ·
√

0.4 · 0.6
5000

≈ 1.3%.

Two-sample t-test
Assumption: two normal distributions X ∼ N(µx, σ

2), Y ∼ N(µy, σ
2) with equal variances.

Exact distribution (X̄−Ȳ )−(µx−µy)

sp
·
√

nm
n+m
∼ tm+n−2

Exact CI for (µx − µy) is given by X̄ − Ȳ ± tm+n−2(α
2
) · sp ·

√
n+m
nm

.
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Two sample t-test, equal population variances

H0: µx = µy, null distribution X̄−Ȳ
sp
·
√

nm
n+m
∼ tm+n−2

If variances are different: X ∼ N(µx, σ
2
x), Y ∼ N(µy, σ

2
y), then (X̄−Ȳ )−(µx−µy)√

s2x̄+s2ȳ
has an approximate

tdf-distribution with df =
(s2x̄+s2ȳ)2

s4x̄/n+s4ȳ/m
− 2 degrees of freedom.

Example: iron retention.
Percentage of Fe2+ and Fe3+ retained by mice data for the concentration 1.2 millimolar: p. 396

Fe2+: n = 18, X̄ = 9.63, sx = 6.69, sx̄ = 1.58
Fe3+: m = 18, Ȳ = 8.20, sy = 5.45, sȳ = 1.28

Boxplots and normal probability plots on p. 397 show that distributions are not normal.
Test H0: µx = µy using observed X̄−Ȳ√

s2x̄+s2ȳ
= 0.7. Large sample test: approximate two-sided P−value =

0.48.
After the log transformation the data looks more like normally distributed, boxplots and normal
probability plots on p. 398-399. The transformed data:

n = 18, X̄ = 2.09, sx = 0.659, sx̄ = 0.155,
m = 18, Ȳ = 1.90, sy = 0.574, sȳ = 0.135.

Two sample t-test
equal variances: T = 0.917, df = 34, P = 0.3656,
unequal variances: T = 0.917, df = 33, P = 0.3658.

Wilcoxon rank sum test
Nonparametric test assuming general population distributions F and G. Test H0: F = G against H1:
F 6= G.

Non-parametric inference approach: pool the samples and replace the data by ranks

Test statistics
either Rx = sum of the ranks of X observations or Ry =

(
n+m+1

2

)
−Rx the sum of Y ranks.

Null distributions of Rx and Ry depend only on sample sizes n and m: table 8, p. A21-23.

E(Rx) = n(m+n+1)
2

, E(Ry) = m(m+n+1)
2

, Var(Rx) = Var(Ry) = mn(m+n+1)
12

.
For n ≥ 10, m ≥ 10 apply the normal approximations for the null distributions.

Example: student heights
In class experiment: X = females, n = 3, Y = males, m = 3. Compute Rx, and find one-sided P -value
for the one-sided alternative.

2 Paired samples

Examples of paired observations:
different drugs for two patients matched by age, sex,
a fruit weighed before and after shipment,
two types of tires tested on the same car.

Paired sample: IID vectors (X1, Y1), . . . , (Xn, Yn). Transform to a one-dimensional sample taking the
differences Di = Xi − Yi. Estimate µx − µy using the sample mean D̄ = X̄ − Ȳ .

2



Correlation coefficient ρ = Cov(X,Y )
σxσy

. We have ρ > 0 for paired observations and ρ = 0 for independent

observations.
Smaller standard error if ρ > 0: Var(D̄) = Var(X̄) + Var(Ȳ )− 2σx̄σȳρ < Var(X̄) + Var(Ȳ ).

Ex 4: platelet aggregation
Paired measurements of n = 11 individuals before smoking, Yi, and after smoking, Xi. Using the

data estimate correlation as ρ ≈ 0.90.

Yi Xi Di Signed rank
25 27 2 +2
25 29 4 +3.5
27 37 10 +6
44 56 12 +7
30 46 16 +10
67 82 15 +8.5
53 57 4 +3.5
53 80 27 +11
52 61 9 +5
60 59 –1 –1
28 43 15 +8.5

Assuming D ∼ N(µ, σ2) apply the one-sample t-test to H0: µx = µy against H1: µx 6= µy.

Observed test statistic D̄
sD̄

= 10.27
2.40

= 4.28. A two-sided P-value = 2*(1 – tcdf(4.28,10)) = 0.0016.

The sign test
No assumption except IID sampling. Non-parametric test of H0: MD = 0 against H1: MD 6= 0.
Test statistics: either Y+ =

∑
1{Di>0} or Y− =

∑
1{Di<0}. Both have null distribution Bin(n, 0.5).

Ties Di = 0: discard tied observations reduce n or dissolve the ties by randomization

Ex 4: platelet aggregation
Observed test statistic Y− = 1. A two-sided P-value = 2[(0.5)11 + 11(0.5)11] = 0.012.

Wilcoxon signed rank test
Non-parametric test of H0: distribution of D is symmetric about MD = 0.
Test statistics: either W+ =

∑
rank(|Di|) · I(Di > 0) or W− =

∑
rank(|Di|) · I(Di < 0).

Assuming no ties we get W+ + W− = n(n+1)
2

. Null distributions of W+ and W− are equal. This
distribution is given in Table 9, p. A24, whatever is the population distribution of D.
Normal approximation of the null distribution with µW = n(n+1)

4
, and σ2

W = n(n+1)(2n+1)
24

for n ≥ 20.

The signed rank test uses more data information than the sign test
but requires symmetric distribution of differences.

Example: platelet aggregation
Observed value of the test statistic W− = 1. It gives a two-sided P-value = 0.002 (check symmetry).
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3 Influence of external factors

Double-blind, randomized controlled experiments are used to balance out external factors like placebo
effect.
Other examples of external factors: time, background variables like temperature, locations of test
animals or test plots in a field.

Example: portocaval shunt
Portocaval shunt is an operation used to lower blood pressure in the liver

Enthusiasm level Marked Moderate None
No controls 24 7 1
Nonrandomized controls 10 3 2
Randomized controls 0 1 3

Example: platelet aggregation
Further parts of the experimental design: control group 1 smoked lettuce cigarettes, control group 2
“smoked” unlit cigarettes.

Simpson’s paradox
Hospital A and has higher overall death rate than hospital B. However, if we split the data in two
parts, patient in good and bad conditions, in both parts A is better.

Hospital: A B A+ B+ A– B–
Died 63 16 6 8 57 8
Survived 2037 784 594 592 1443 192
Total 2100 800 600 600 1500 200
Death Rate .030 .020 .010 .013 .038 .040

Patient condition: good + or poor −, is a confounding factor:

Hospital performance ← Patient condition → Death rate

WIKIPEDIA. In statistics, a confounding variable (also confounding factor, a confound, or con-
founder) is an extraneous variable in a statistical model that correlates (directly or inversely) with
both the dependent variable and the independent variable.
A spurious relationship is a perceived relationship between an independent variable and a dependent
variable that has been estimated incorrectly because the estimate fails to account for a confounding
factor. The incorrect estimation suffers from omitted-variable bias.
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