Chapter 11. Comparing two samples

Data consist of two IID samples (X_1, \ldots, X_n) and (Y_1, \ldots, Y_m) from two populations with (μ_x, σ_x) and (μ_y, σ_y) .

The difference $(\bar{X} - \bar{Y})$ is an unbiased estimate of $(\mu_x - \mu_y)$. Questions: find an interval estimate of $(\mu_x - \mu_y)$, and test the null hypothesis of equality H_0 : $\mu_x = \mu_y$.

1 Two independent samples

If (X_1, \ldots, X_n) is independent from (Y_1, \ldots, Y_m) , then $\operatorname{Var}(\bar{X} - \bar{Y}) = \frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}$. Therefore, an unbiased estimate of $\operatorname{Var}(\bar{X} - \bar{Y})$ is $s_{\bar{x}}^2 + s_{\bar{y}}^2$.

In the special case of equal variances $\sigma_x^2 = \sigma_y^2 = \sigma^2$, the pooled sample variance

$$s_p^2 = \frac{n-1}{n+m-2} \cdot s_x^2 + \frac{m-1}{n+m-2} \cdot s_y^2$$

is an unbiased estimate of the variance: $E(s_p^2) = \sigma^2$. Notice that $Var(\bar{X} - \bar{Y}) = \sigma^2 \cdot \frac{n+m}{nm}$, and $s_{\bar{X}-\bar{Y}}^2 = s_p^2 \cdot \frac{n+m}{nm}$ gives another unbiased estimate of $Var(\bar{X} - \bar{Y})$.

Large sample test for the difference

If n and m are large use a normal approximation $\bar{X} - \bar{Y} \stackrel{a}{\sim} N(\mu_x - \mu_y, s_{\bar{x}}^2 + s_{\bar{y}}^2).$

Approximate CI for $(\mu_x - \mu_y)$ is given by $\bar{X} - \bar{Y} \pm z_{\alpha/2} \cdot \sqrt{s_{\bar{x}}^2 + s_{\bar{y}}^2}$.

Dichotomous data: $X \sim Bin(n, p_1), Y \sim Bin(m, p_2)$. Normal approximation:

 $\hat{p}_1 - \hat{p}_2 \stackrel{a}{\sim} \mathcal{N}(p_1 - p_2, \frac{\hat{p}_1 \hat{q}_1}{n-1} + \frac{\hat{p}_2 \hat{q}_2}{m-1})$ implies an approximate CI for $(p_1 - p_2)$: $\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n-1} + \frac{\hat{p}_2 \hat{q}_2}{m-1}}$.

Example: swedish polls.

Two consecutive poll results \hat{p}_1 and \hat{p}_2 with $n \approx m \approx 5000$ interviews. A change in support to Social Democrats at $\hat{p}_1 \approx 0.4$ is significant if

$$|\hat{p}_1 - \hat{p}_2| > 1.96 \cdot \sqrt{2 \cdot \frac{0.4 \cdot 0.6}{5000}} \approx 1.9\%$$

This should be compared with the one-sample hypothesis testing $H_0: p = 0.4$ vs $H_0: p \neq 0.4$. The approximate 95% CI for p is $\hat{p} \pm 1.96 \cdot \sqrt{\frac{\hat{p}\hat{q}}{n-1}}$ and if $\hat{p} \approx 0.4$, then the difference is significant if

$$|\hat{p} - p_0| > 1.96 \cdot \sqrt{\frac{0.4 \cdot 0.6}{5000}} \approx 1.3\%$$

Two-sample t-test

Assumption: two normal distributions $X \sim N(\mu_x, \sigma^2)$, $Y \sim N(\mu_y, \sigma^2)$ with equal variances.

Exact distribution
$$\frac{(\bar{X}-\bar{Y})-(\mu_x-\mu_y)}{s_p} \cdot \sqrt{\frac{nm}{n+m}} \sim t_{m+n-2}$$

Exact CI for $(\mu_x - \mu_y)$ is given by $\bar{X} - \bar{Y} \pm t_{m+n-2}(\frac{\alpha}{2}) \cdot s_p \cdot \sqrt{\frac{n+m}{nm}}$.

Two sample t-test, equal population variances

$$H_0: \mu_x = \mu_y$$
, null distribution $\frac{\bar{X} - \bar{Y}}{s_p} \cdot \sqrt{\frac{nm}{n+m}} \sim t_{m+n-2}$

If variances are different: $X \sim N(\mu_x, \sigma_x^2)$, $Y \sim N(\mu_y, \sigma_y^2)$, then $\frac{(\bar{X}-\bar{Y})-(\mu_x-\mu_y)}{\sqrt{s_x^2+s_y^2}}$ has an approximate $t_{\rm df}$ -distribution with df = $\frac{(s_x^2+s_y^2)^2}{s_x^2/n+s_y^2/m} - 2$ degrees of freedom.

Example: iron retention.

Percentage of Fe²⁺ and Fe³⁺ retained by mice data for the concentration 1.2 millimolar: p. 396 Fe²⁺: n = 18, $\bar{X} = 9.63$, $s_x = 6.69$, $s_{\bar{x}} = 1.58$

Fe³⁺: m = 18, $\bar{Y} = 8.20$, $s_y = 5.45$, $s_{\bar{y}} = 1.28$

Boxplots and normal probability plots on p. 397 show that distributions are not normal. Test H_0 : $\mu_x = \mu_y$ using observed $\frac{\bar{X}-\bar{Y}}{\sqrt{s_x^2+s_y^2}} = 0.7$. Large sample test: approximate two-sided P-value = 0.48.

After the log transformation the data looks more like normally distributed, boxplots and normal probability plots on p. 398-399. The transformed data:

 $n = 18, \ \bar{X} = 2.09, \ s_x = 0.659, \ s_{\bar{x}} = 0.155,$

 $m = 18, Y = 1.90, s_y = 0.574, s_{\bar{y}} = 0.135.$

Two sample t-test

equal variances: T = 0.917, df = 34, P = 0.3656, unequal variances: T = 0.917, df = 33, P = 0.3658.

Wilcoxon rank sum test

Nonparametric test assuming general population distributions F and G. Test H_0 : F = G against H_1 : $F \neq G$.

Non-parametric inference approach: pool the samples and replace the data by ranks

Test statistics

either $R_x = \text{sum of the ranks of } X$ observations or $R_y = \binom{n+m+1}{2} - R_x$ the sum of Y ranks. Null distributions of R_x and R_y depend only on sample sizes n and m: table 8, p. A21-23.

 $E(R_x) = \frac{n(m+n+1)}{2}, E(R_y) = \frac{m(m+n+1)}{2}, Var(R_x) = Var(R_y) = \frac{mn(m+n+1)}{12}.$

For $n \ge 10$, $m \ge 10$ apply the normal approximations for the null distributions.

Example: student heights

In class experiment: X = females, n = 3, Y = males, m = 3. Compute R_x , and find one-sided *P*-value for the one-sided alternative.

2 Paired samples

Examples of paired observations:

different drugs for two patients matched by age, sex,

a fruit weighed before and after shipment,

two types of tires tested on the same car.

Paired sample: IID vectors $(X_1, Y_1), \ldots, (X_n, Y_n)$. Transform to a one-dimensional sample taking the differences $D_i = X_i - Y_i$. Estimate $\mu_x - \mu_y$ using the sample mean $\overline{D} = \overline{X} - \overline{Y}$.

Correlation coefficient $\rho = \frac{\text{Cov}(X,Y)}{\sigma_x \sigma_y}$. We have $\rho > 0$ for paired observations and $\rho = 0$ for independent observations.

Smaller standard error if $\rho > 0$: $\operatorname{Var}(\bar{D}) = \operatorname{Var}(\bar{X}) + \operatorname{Var}(\bar{Y}) - 2\sigma_{\bar{x}}\sigma_{\bar{y}}\rho < \operatorname{Var}(\bar{X}) + \operatorname{Var}(\bar{Y}).$

Ex 4: platelet aggregation

Paired measurements of n = 11 individuals before smoking, Y_i , and after smoking, X_i . Using the data estimate correlation as $\rho \approx 0.90$.

Y_i	X_i	D_i	Signed rank
25	27	2	+2
25	29	4	+3.5
27	37	10	+6
44	56	12	+7
30	46	16	+10
67	82	15	+8.5
53	57	4	+3.5
53	80	27	+11
52	61	9	+5
60	59	-1	-1
28	43	15	+8.5

Assuming $D \sim N(\mu, \sigma^2)$ apply the one-sample *t*-test to $H_0: \mu_x = \mu_y$ against $H_1: \mu_x \neq \mu_y$. Observed test statistic $\frac{\bar{D}}{s_{\bar{D}}} = \frac{10.27}{2.40} = 4.28$. A two-sided P-value = $2^*(1 - \text{tcdf}(4.28, 10)) = 0.0016$.

The sign test

No assumption except IID sampling. Non-parametric test of H_0 : $M_D = 0$ against H_1 : $M_D \neq 0$. Test statistics: either $Y_+ = \sum \mathbb{1}_{\{D_i > 0\}}$ or $Y_- = \sum \mathbb{1}_{\{D_i < 0\}}$. Both have null distribution Bin(n, 0.5).

Ties $D_i = 0$: discard tied observations reduce n or dissolve the ties by randomization

Ex 4: platelet aggregation

Observed test statistic $Y_{-} = 1$. A two-sided P-value $= 2[(0.5)^{11} + 11(0.5)^{11}] = 0.012$.

Wilcoxon signed rank test

Non-parametric test of H_0 : distribution of D is symmetric about $M_D = 0$. Test statistics: either $W_+ = \sum \operatorname{rank}(|D_i|) \cdot I(D_i > 0)$ or $W_- = \sum \operatorname{rank}(|D_i|) \cdot I(D_i < 0)$. Assuming no ties we get $W_+ + W_- = \frac{n(n+1)}{2}$. Null distributions of W_+ and W_- are equal. This distribution is given in Table 9, p. A24, whatever is the population distribution of D. Normal approximation of the null distribution with $\mu_W = \frac{n(n+1)}{4}$, and $\sigma_W^2 = \frac{n(n+1)(2n+1)}{24}$ for $n \ge 20$.

> The signed rank test uses more data information than the sign test but requires symmetric distribution of differences.

Example: platelet aggregation

Observed value of the test statistic $W_{-} = 1$. It gives a two-sided P-value = 0.002 (check symmetry).

3 Influence of external factors

Double-blind, randomized controlled experiments are used to balance out external factors like placebo effect.

Other examples of external factors: time, background variables like temperature, locations of test animals or test plots in a field.

Example: portocaval shunt

Portocaval shunt is an operation used to lower blood pressure in the liver

Enthusiasm level	Marked	Moderate	None
No controls	24	7	1
Nonrandomized controls	10	3	2
Randomized controls	0	1	3

Example: platelet aggregation

Further parts of the experimental design: control group 1 smoked lettuce cigarettes, control group 2 "smoked" unlit cigarettes.

Simpson's paradox

Hospital A and has higher overall death rate than hospital B. However, if we split the data in two parts, patient in good and bad conditions, in both parts A is better.

Hospital:	A	В	A+	B+	A–	B–
Died	63	16	6	8	57	8
Survived	2037	784	594	592	1443	192
Total	2100	800	600	600	1500	200
Death Rate	.030	.020	.010	.013	.038	.040

Patient condition: good + or poor -, is a confounding factor:

Hospital performance \leftarrow Patient condition \rightarrow Death rate

WIKIPEDIA. In statistics, a confounding variable (also <u>confounding factor</u>, a confound, or confounder) is an extraneous variable in a statistical model that correlates (directly or inversely) with both the dependent variable and the independent variable.

A <u>spurious relationship</u> is a perceived relationship between an independent variable and a dependent variable that has been estimated incorrectly because the estimate fails to account for a confounding factor. The incorrect estimation suffers from omitted-variable bias.